Abstract

An electrically controllable liquid crystal (LC) microlens with polymer crater, which is simply prepared by droplet evaporation, has been previously proposed as a focusing device possessing excellent characteristics in optical performance, especially for the capability of tunable focal lengths. As the alignment layer on the crater surface cannot be effectively rubbed, non-uniformly symmetrical electric fields in the LC lenses usually induce disclination lines during operation. In this paper, a polymer surface stabilization technique is applied to successfully prevent disclination lines and greatly improve the performance of the LC microlens with the polymer crater.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-C. Lin, M.-S. Chen, Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
    [CrossRef]
  2. M. Sluijter, A. Herzog, D. K. G. De Boer, M. P. C. M. Krijn, P. H. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009).
    [CrossRef]
  3. P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010).
    [CrossRef] [PubMed]
  4. Y. Choi, Y.-T. Kim, S.-D. Lee, J.-H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
    [CrossRef]
  5. H.-S. Ji, J.-H. Kim, S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett. 28(13), 1147–1149 (2003).
    [CrossRef] [PubMed]
  6. B. Wang, M. Ye, S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
    [CrossRef] [PubMed]
  7. H. Ren, D. W. Fox, B. Wu, S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [CrossRef] [PubMed]
  8. S.-C. Jeng, S.-J. Hwang, J.-S. Horng, K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
    [CrossRef] [PubMed]
  9. S.-J. Hwang, T.-A. Chen, K.-R. Lin, S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
    [CrossRef]
  10. M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
    [CrossRef]
  11. S.-J. Hwang, Y.-X. Liu, G. A. Porter, “Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation,” Opt. Express 21(25), 30731–30738 (2013).
    [CrossRef] [PubMed]
  12. M. Ye, B. Wang, S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [CrossRef] [PubMed]
  13. M. Ye, B. Wang, S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
    [CrossRef]
  14. M. Ye, S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
    [CrossRef]
  15. C. J. Hsu, C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express 19(16), 14999–15008 (2011).
    [CrossRef] [PubMed]
  16. H. Ren, S. Xu, S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
    [CrossRef] [PubMed]

2013 (3)

2012 (1)

S.-J. Hwang, T.-A. Chen, K.-R. Lin, S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[CrossRef]

2011 (2)

C. J. Hsu, C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express 19(16), 14999–15008 (2011).
[CrossRef] [PubMed]

H.-C. Lin, M.-S. Chen, Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[CrossRef]

2010 (2)

2009 (1)

2007 (1)

2005 (2)

Y. Choi, Y.-T. Kim, S.-D. Lee, J.-H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[CrossRef]

M. Ye, S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
[CrossRef]

2004 (2)

2003 (2)

H.-S. Ji, J.-H. Kim, S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett. 28(13), 1147–1149 (2003).
[CrossRef] [PubMed]

M. Ye, B. Wang, S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[CrossRef]

Chen, M.-S.

H.-C. Lin, M.-S. Chen, Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[CrossRef]

Chen, T.-A.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[CrossRef]

Choi, Y.

Y. Choi, Y.-T. Kim, S.-D. Lee, J.-H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[CrossRef]

De Boer, D. K. G.

Fox, D. W.

Herzog, A.

Horng, J.-S.

Hsu, C. J.

Hwang, S.-J.

Jeng, S.-C.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[CrossRef]

S.-C. Jeng, S.-J. Hwang, J.-S. Horng, K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[CrossRef] [PubMed]

Ji, H.-S.

Kim, J.-H.

Y. Choi, Y.-T. Kim, S.-D. Lee, J.-H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[CrossRef]

H.-S. Ji, J.-H. Kim, S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett. 28(13), 1147–1149 (2003).
[CrossRef] [PubMed]

Kim, Y.-T.

Y. Choi, Y.-T. Kim, S.-D. Lee, J.-H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[CrossRef]

Krijn, M. P. C. M.

Kumar, S.

Lee, S. H.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[CrossRef]

Lee, S.-D.

Y. Choi, Y.-T. Kim, S.-D. Lee, J.-H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[CrossRef]

Lin, H.-C.

H.-C. Lin, M.-S. Chen, Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[CrossRef]

Lin, K.-R.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[CrossRef]

S.-C. Jeng, S.-J. Hwang, J.-S. Horng, K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film,” Opt. Express 18(25), 26325–26331 (2010).
[CrossRef] [PubMed]

Lin, Y.-H.

H.-C. Lin, M.-S. Chen, Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[CrossRef]

Liu, Y.-X.

Peyghambarian, N.

Peyman, G.

Porter, G. A.

Ren, H.

Reza Dodge, M.

Sato, S.

M. Ye, S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
[CrossRef]

M. Ye, B. Wang, S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

B. Wang, M. Ye, S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[CrossRef] [PubMed]

M. Ye, B. Wang, S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[CrossRef]

Schwiegerling, J.

Sheu, C. R.

Sluijter, M.

Urbach, P. H.

Valley, P.

Wang, B.

Wang, Q.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[CrossRef]

Wu, B.

Wu, S. T.

Wu, S.-T.

Xu, M.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[CrossRef]

Xu, S.

Ye, M.

M. Ye, S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
[CrossRef]

M. Ye, B. Wang, S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

B. Wang, M. Ye, S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[CrossRef] [PubMed]

M. Ye, B. Wang, S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[CrossRef]

Zhou, Z.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

S.-J. Hwang, T.-A. Chen, K.-R. Lin, S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[CrossRef]

J. Appl. Phys. (1)

M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. Ye, B. Wang, S. Sato, “Driving of liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42(8), 5086–5089 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

M. Ye, S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
[CrossRef]

Y. Choi, Y.-T. Kim, S.-D. Lee, J.-H. Kim, “Polarization independent static microlens array in the homeotropic liquid crystal configuration,” Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Trans. Electr. Electron. Mater. (1)

H.-C. Lin, M.-S. Chen, Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The schematic diagram of the procedures for fabricating a LC microlens with a polymer crater by the MD method and 2-step UV curing process.

Fig. 2
Fig. 2

(a) 2D, and (b)3D images of the polymer crater observed by optical surface profiler.

Fig. 3
Fig. 3

(a) Scheme of the LCs near the upper glass will be rotated in reverse directions and disclination line occurs as applying voltages in the cell, (b) elimination of disclination lines occurs in the LC lenses based on polymer stabilization.

Fig. 4
Fig. 4

The process of fabricating the polymer network which sustain the polymer LC directors near the crater surface.

Fig. 5
Fig. 5

An observation of the color change with respect to various applied voltages in the LC microlens (a) without and (b) with the polymer surface stabilization, respectively.

Fig. 6
Fig. 6

The interference fringes of the LC microlens at different voltages; 0, 5, 7, 15, 20, and 40 Vrms.

Fig. 7
Fig. 7

The measured focal length of a PSLC microlens under different applied voltages.

Fig. 8
Fig. 8

The imaging behavior of the LC microlens (a) without surface modification at V = 0, and with surface modification under different applied voltages: (b) 0, (c) 20, and (d) 45 Vrms.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E LC = V ε LC /( d p ε p + d LC ε LC )
f= r 2 /2λN

Metrics