Abstract

The generation of pulses in dual-pump fiber optical parametric amplifier is investigated. Theoretically, it is shown that in an analogical manner to pulse generation in single-pump fiber optical parametric amplifiers, the generated pulse shape depends on the linear phase mismatch between the interacting waves. However the dual-pump architecture allows for the bounding of the phase mismatch over a wide bandwidth. This feature permits the generation of uniform pulses over a wide bandwidth, contrary to the single-pump architecture. Using the developed theory, a pulse source with uniform pulses at 5 GHz repetition rate and duty cycle of 0.265 over 40 nm is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yoshida, N. Shimizu, M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photonics Technol. Lett. 11(12), 1587–1589 (1999).
    [CrossRef]
  2. A. O. Wiberg, C.-S. Brès, B.-P. Kuo, E. Myslivets, and S. Radic, “Cavity-less 40 GHz pulse source tunable over 95 nm” in European Conference and Exhibition on Optical Communication ECOC 2009, OSA Technical Digest (online) (Optical Society of America, 2009), pp. 1–2.
  3. V. R. Supradeepa, A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37(15), 3066–3068 (2012).
    [CrossRef] [PubMed]
  4. X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
    [CrossRef]
  5. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  6. C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
    [CrossRef]
  7. J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
    [CrossRef]
  8. G.-W. Lu, K. Abedin, T. Miyazaki, M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett. 45(4), 221–222 (2009).
    [CrossRef]
  9. T. Torounidis, M. Karlsson, P. A. Andrekson, “Fiber optical parametric amplifier pulse source: Theory and experiments,” J. Lightwave Technol. 23(12), 4067–4073 (2005).
    [CrossRef]
  10. A. Vedadi, A. M. Ariaei, M. M. Jadidi, J. A. Salehi, “Theoretical study of high repetition rate short pulse generation with fiber optical parametric amplification,” J. Lightwave Technol. 30(9), 1263–1268 (2012).
    [CrossRef]
  11. A. Vedadi, M. A. Shoaie, C. S. Brès, “Near-Nyquist optical pulse generation with fiber optical parametric amplification,” Opt. Express 20(26), B558–B565 (2012).
    [CrossRef] [PubMed]
  12. C. J. McKinstrie, S. Radic, A. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
    [CrossRef] [PubMed]
  13. M. Yu, C. J. McKinstrie, G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(3), 2178–2186 (1993).
    [CrossRef] [PubMed]
  14. A. A. Vedadi, M. A. Shoaie, C.-S. Brès, “Experimental investigation of pulse generation with one-pump fiber optical parametric amplification,” Opt. Express 20(24), 27344–27354 (2012).
    [CrossRef] [PubMed]
  15. M. E. Marhic, Y. Park, F. S. Yang, L. G. Kazovsky, “Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Opt. Lett. 21(17), 1354–1356 (1996).
    [CrossRef] [PubMed]
  16. A. Vedadi, C. S. Brès, and M. A. Shoaie, “Wideband uniform generation of shape-adjustable pulses in two-pump fiber optic parametric amplifier,” in European Conference and Exhibition on Optical Communication ECOC 2013, OSA Technical Digest (online) (Optical Society of America, 2013), pp. 873–875.
  17. A. A. Vedadi, N. Grossard, J. Hauden, E. Lantz, H. Maillotte, T. Sylvestre, “Demonstration of an integrated LiNbO3 synchronized double phase modulator and its application to dual-pump fiber optical parametric amplifiers and wavelength converters,” J. Lightwave Technol. 26(7), 777–781 (2008).
    [CrossRef]
  18. M. C. Ho, M. E. Marhic, K. Y. K. Wong, L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
    [CrossRef]
  19. J. Hansryd, P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett. 37(9), 584–585 (2001).
    [CrossRef]
  20. F. Yaman, Q. Lin, G. P. Agrawal, S. Radic, “Pump-noise transfer in dual-pump fiber-optic parametric amplifiers: Walk-off effects,” Opt. Lett. 30(9), 1048–1050 (2005).
    [CrossRef] [PubMed]
  21. A. Bogris, D. Syvridis, P. Kylemark, P. A. Andrekson, “Noise characteristics of dual-pump fiber-optic parametric amplifiers,” J. Lightwave Technol. 23(9), 2788–2795 (2005).
    [CrossRef]
  22. P. Kylemark, J. Ren, M. Karlsson, S. Radic, C. J. McKinstrie, P. A. Andrekson, “Noise in dual-pumped fiber-optical parametric amplifiers: Theory and experiments,” J. Lightwave Technol. 25(9), 2837–2846 (2007).
    [CrossRef]
  23. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
    [CrossRef] [PubMed]

2013 (1)

X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
[CrossRef]

2012 (4)

2009 (1)

G.-W. Lu, K. Abedin, T. Miyazaki, M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett. 45(4), 221–222 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

2005 (3)

2002 (2)

2001 (2)

J. Hansryd, P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett. 37(9), 584–585 (2001).
[CrossRef]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[CrossRef]

1999 (1)

E. Yoshida, N. Shimizu, M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photonics Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

1996 (1)

1993 (1)

M. Yu, C. J. McKinstrie, G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(3), 2178–2186 (1993).
[CrossRef] [PubMed]

Abedin, K.

G.-W. Lu, K. Abedin, T. Miyazaki, M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett. 45(4), 221–222 (2009).
[CrossRef]

Adler, M.

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

Agrawal, G. P.

F. Yaman, Q. Lin, G. P. Agrawal, S. Radic, “Pump-noise transfer in dual-pump fiber-optic parametric amplifiers: Walk-off effects,” Opt. Lett. 30(9), 1048–1050 (2005).
[CrossRef] [PubMed]

M. Yu, C. J. McKinstrie, G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(3), 2178–2186 (1993).
[CrossRef] [PubMed]

Andrekson, P.

J. Hansryd, P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett. 37(9), 584–585 (2001).
[CrossRef]

Andrekson, P. A.

Ariaei, A. M.

Bickham, S. R.

Bogris, A.

Brès, C. S.

Brès, C.-S.

Chavez Boggio, J. M.

Chraplyvy, A.

C. J. McKinstrie, S. Radic, A. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef] [PubMed]

Fragnito, H. L.

Grossard, N.

Hansryd, J.

J. Hansryd, P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett. 37(9), 584–585 (2001).
[CrossRef]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[CrossRef]

Hauden, J.

Hedekvist, P. O.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[CrossRef]

Ho, M. C.

Jadidi, M. M.

Karlsson, M.

Kazovsky, L. G.

Knudsen, S. N.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[CrossRef]

Kylemark, P.

Lantz, E.

Li, J.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[CrossRef]

Lin, Q.

Lu, G.-W.

G.-W. Lu, K. Abedin, T. Miyazaki, M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett. 45(4), 221–222 (2009).
[CrossRef]

Luo, T.

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

Maillotte, H.

Marconi, J. D.

Marhic, M.

G.-W. Lu, K. Abedin, T. Miyazaki, M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett. 45(4), 221–222 (2009).
[CrossRef]

Marhic, M. E.

McGeehan, J. E.

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

McKinstrie, C. J.

P. Kylemark, J. Ren, M. Karlsson, S. Radic, C. J. McKinstrie, P. A. Andrekson, “Noise in dual-pumped fiber-optical parametric amplifiers: Theory and experiments,” J. Lightwave Technol. 25(9), 2837–2846 (2007).
[CrossRef]

C. J. McKinstrie, S. Radic, A. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef] [PubMed]

M. Yu, C. J. McKinstrie, G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(3), 2178–2186 (1993).
[CrossRef] [PubMed]

Miyazaki, T.

G.-W. Lu, K. Abedin, T. Miyazaki, M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett. 45(4), 221–222 (2009).
[CrossRef]

Nakazawa, M.

E. Yoshida, N. Shimizu, M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photonics Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

Pan, Z.

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

Park, Y.

Radic, S.

Ren, J.

Salehi, J. A.

Shimizu, N.

E. Yoshida, N. Shimizu, M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photonics Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

Shoaie, M. A.

Supradeepa, V. R.

Sylvestre, T.

Syvridis, D.

Torounidis, T.

Vedadi, A.

Vedadi, A. A.

Wang, X.

X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
[CrossRef]

Wang, Y.

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

Weiner, A. M.

Willner, A. E.

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

Wong, K. K. Y.

X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
[CrossRef]

Wong, K. Y. K.

Xu, J.

X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
[CrossRef]

Xu, X.

X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
[CrossRef]

Yaman, F.

Yang, F. S.

Yoshida, E.

E. Yoshida, N. Shimizu, M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photonics Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

Yu, C.

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

Yu, M.

M. Yu, C. J. McKinstrie, G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(3), 2178–2186 (1993).
[CrossRef] [PubMed]

Zhang, B.

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

Zhang, C.

X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
[CrossRef]

Zhou, Y.

X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
[CrossRef]

IEE Electron. Lett. (2)

G.-W. Lu, K. Abedin, T. Miyazaki, M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett. 45(4), 221–222 (2009).
[CrossRef]

J. Hansryd, P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett. 37(9), 584–585 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. McKinstrie, S. Radic, A. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef] [PubMed]

IEEE Photonics Technol. Lett. (4)

E. Yoshida, N. Shimizu, M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photonics Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

X. Wang, Y. Zhou, X. Xu, C. Zhang, J. Xu, K. K. Y. Wong, “Multiwavelength Pulse Generation Using Fiber Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 25(1), 33–35 (2013).
[CrossRef]

C. Yu, T. Luo, B. Zhang, Z. Pan, M. Adler, Y. Wang, J. E. McGeehan, A. E. Willner, “Wavelength-shift-free 3R regenerator for 40-Gb/s RZ system by optical parametric amplification in fiber,” IEEE Photonics Technol. Lett. 18(24), 2569–2571 (2006).
[CrossRef]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

M. Yu, C. J. McKinstrie, G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(3), 2178–2186 (1993).
[CrossRef] [PubMed]

Other (3)

A. Vedadi, C. S. Brès, and M. A. Shoaie, “Wideband uniform generation of shape-adjustable pulses in two-pump fiber optic parametric amplifier,” in European Conference and Exhibition on Optical Communication ECOC 2013, OSA Technical Digest (online) (Optical Society of America, 2013), pp. 873–875.

A. O. Wiberg, C.-S. Brès, B.-P. Kuo, E. Myslivets, and S. Radic, “Cavity-less 40 GHz pulse source tunable over 95 nm” in European Conference and Exhibition on Optical Communication ECOC 2009, OSA Technical Digest (online) (Optical Society of America, 2009), pp. 1–2.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Gain sensitivity versus normalized phase mismatch term Δβ/γP0 for different pumps total power and HNLF lengths. (b) Gain sensitivity for different linear phase mismatch terms as a function of α = |P1/P2|.

Fig. 2
Fig. 2

(a) Idler pulse duty cycle (solid line) defined as DC = TFWHM × fR versus normalized phase mismatch term Δβ/γP0 (b) Gain as a function of phase mismatch term Δβ/γP0 for P0 = 0.5 W and L = 350 m. The inset shows the inverse relation between S P 0 G and DC.

Fig. 3
Fig. 3

(a) Idler pulse shapes over one period as a function of Δβ/γP0 (b) Normalized intensity of idler pulses over one period for different phase matching condition.

Fig. 4
Fig. 4

(a) Basic principle of pulse generation in dual-pump FOPA. As Δβ/γP0 is bound to m with a ripple ρ, the DC of generated pulses follows a similar trend in frequency. Instantaneous dual-pump FOPA gain spectra (b) two synchronously modulated pumps (c) one modulated and one CW pump. The peak power of each pump is P0/2 = 0.25W.

Fig. 5
Fig. 5

Experimental setup of pulse generation in dual-pump FOPA. TL: tunable laser; IM: intensity modulator; PM: phase modulator; PC:polarization controller; TBF: tunable bandpass filter; WDM: wavelength division multiplexer; OSA: optical spectrum analyzer.

Fig. 6
Fig. 6

Results of pulse-width behavior in dual-pump FOPA for case 1 and case 2 parameters. (a) and (c): experimental (dot) and theoretical gain spectrum obtained from TS (dash line) and FS (solid line) interaction model as well as normalized phase mismatch for case 1 and 2, respectively. (b) and (d): experimental (dot) DC values along with theoretical results derived from TS (dash line) and FS (solid line) interaction model case 1 and 2, respectively.

Fig. 7
Fig. 7

(a) and (b) depict average pulse shape evolution with idler wavelength respectively regarding the first and second phase matching condition described in Table 1. (c) Actual (act) and averaged (avg) pulse shape for Δβ/γP0 = 0.9 in the first case and for Δβ/γP0 = −0.28 in the second case.

Tables (1)

Tables Icon

Table 1 Summary of the Settings and Parameters for the Three Experimental Cases Studied

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

G i = ( r g sinh(gL) ) 2
G s = G i +1
r=2γ P 1 P 2
g 2 = r 2 ( κ 2 ) 2
κ=Δβ+Δ β NL
Δβ= β 2 [ (Δ ω s ) 2 (Δ ω p ) 2 ]+ β 4 12 [ (Δ ω s ) 4 (Δ ω p ) 4 ]
Δ β NL =γ( P 1 + P 2 )=γ P 0
S P 0 G = ( G P 0 ) G = ln( G ) P 0
S P n G = 1 P n γ g 2 (4γ P 3n κ/2)+ Lγ g (4γ P 3n κ/2)coth(gL) for n=1,2
P n (t)= P n0 cos 2 (π f n t+ φ n ), n=1,2
P(z,t) P 0 [1 (π f R t) 2 ]
G out,3 (t) (γ P 0 L) 2 sin c 2 ( 3 γ P 0 L f R t)
G out,1 (t) exp(2γ P 0 L) /4 ×exp(2γ P 0 L (π f R t) 2 )
G out,1 (t) (γ P 0 L) 2 sin c 2 (γ P 0 L f R t)
DC= 1 π 2ln2 γ P 0 L + 0.62 P 0 ( 1 ln( S P 0 G ) 1 ln( 2γLcoth(γ P 0 L) ) )
Δβ γ P 0 =m+ρ T 4 ( Δ ω s Δ ω t )
Δ ω t = 12 β 2 β 4
ρ= 3 2 β 2 2 β 4 γ P 0
( β 4 12γ P 0 )( Δ ω p 4 )+( β 2 γ P 0 ) ( Δ ω p ) 2 +(ρ+m)=0
β 2 = β 4 Δ ω p 2 3 [ 1 ( 1 2 6mγ P 0 β 4 Δ ω p 4 ) 1/2 ]
Δ ω t =2Δ ω p ( 1 { 1 2 [ 1+ ( Δ ω 4 Δ ω p ) 4 ] } 1/2 ) 1/2
G P 1 = P 1 ( r g sinh(gL) ) 2 = P 1 ( r g ) 2 sin h 2 (gL)+ ( r g ) 2 P 1 sin h 2 (gL)
G P 1 =2 r 2 g 2 sin h 2 (gL)( 1 2 P 1 γ g (2 P 2 κ/4 )+ γL g (2 P 2 κ/4 )coth(gL) )
S P 1 G = ( G P 1 ) G = 1 P 1 γ g 2 (4γ P 2 κ/2 )+ γL g (4γ P 2 κ/2 )coth(gL)
S P 1 G = 1 P 1 +(4 γ 2 P 2 κγ /2 )×( L 2 3 + L g O (gL) 3 ), 0<| gL |<π
lim S P 1 G Δβ / γ P 0 3 = 1 P 1 + γ 2 L 2 (4 P 2 + P 0 ) 3 , lim S P 1 G Δβ / γ P 0 1 = 1 P 1 + γ 2 L 2 (4 P 2 P 0 ) 3
S P 1 G = 1 P 1 +(4 γ 2 P 2 κγ /2 )×( L 2 gL 1 g 2 ), | gL |>π
r(t)=γ P 0 cos 2 (π f R t)
κ(t)=Δβ+γ P 0 cos 2 (π f R t)
Δβ / γ P 0 =mκ(t)=γ P 0 (m+ cos 2 (π f R t))
Δβ / γ P 0 =3:gj 3 γ P 0 | sin(π f R t) |j 3 πγ P 0 f R t
Δβ / γ P 0 =1:gγ P 0 (1 sin 2 (π f R t)) 1/2 γ P 0 (1 (π f R t) 2 )
Δβ / γ P 0 =1:gjγ P 0 | sin(π f R t) |jπγ P 0 f R t
Δβ / γ P 0 =3: P out (t) P s (γ P 0 L) 2 sin c 2 ( 3 γ P 0 L f R t)
Δβ / γ P 0 =1: P out (t) P s exp(2γ P 0 L) /4 ×exp(2γ P 0 L (π f R t) 2 )
Δβ / γ P 0 =1: P out (t) P s (γ P 0 L) 2 sin c 2 (γ P 0 L f R t)

Metrics