Abstract

Mode-division multiplexing (MDM) is an emerging multiple-input multiple-output method, utilizing multimode waveguides to increase channel numbers. In the past, silicon-on-insulator (SOI) devices have been primarily focused on single-mode waveguides. We present the design and fabrication of a two-mode SOI ring resonator for MDM systems. By optimizing the device parameters, we have ensured that each mode is treated equally within the ring. Using adiabatic Bezier curves in the ring bends, our ring demonstrated a signal-to-crosstalk ratio above 18 dB for both modes at the through and drop ports. We conclude that the ring resonator has the potential for filtering and switching for MDM systems on SOI.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
    [CrossRef]
  2. D. Dai, J. Wang, Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [CrossRef] [PubMed]
  3. R.-j. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  4. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-j. Essiambre, P. J. Winzer, D. W. Peckham, A. H. Mccurdy, R. Lingle, “Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 × 6 MIMO Processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [CrossRef]
  5. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides With Small Cross Section,” J. Lightwave Technol. 23(6), 2103–2111 (2005).
    [CrossRef]
  6. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
    [CrossRef]
  7. P. Dong, S. F. Preble, M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [CrossRef] [PubMed]
  8. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator.” Nature 435, 325–327 (2005).
    [CrossRef] [PubMed]
  9. A. C. Ruege, S. Member, R. M. Reano, “Sharp Fano Resonances From a Two-Mode Waveguide Coupled to a Single-Mode Resonator,” J. Lightwave Technol. 28(20), 2964–2968 (2010).
    [CrossRef]
  10. Y. Tanushi, S. Yokoyama, “Compact Multimode Optical Ring Resonators for Interconnection on Silicon Chips,” Jpn. J. of Appl. Phys. 46(4B), 2364–2368 (2007).
    [CrossRef]
  11. A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, H. Kurz, “Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
    [CrossRef]
  12. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing.” Opt. Lett. 38(11), 1854–1856 (2013).
    [CrossRef] [PubMed]
  13. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [CrossRef]
  14. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [CrossRef] [PubMed]
  15. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376 (2013).
    [CrossRef] [PubMed]
  16. M. Greenberg, M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Exp. 13(23), 9381–9387 (2005).
    [CrossRef]
  17. A. Melloni, P. Monguzzi, R. Costa, M. Martinelli, “Design of curved waveguides: the matched bend.” J. Opt. Soc. Am. A 20, 130–137 (2003).
    [CrossRef]
  18. L. Soldano, E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  19. L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends.” Nat. Commun. 3, 1217 (2012).
    [CrossRef] [PubMed]
  20. M. Sumetsky, “Theory of adiabatic optical fiber and microfiber tapers,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference” Technical Digest (CD) (Optical Society of America, 2006), paper OTuH2.
  21. H. Yun, W. Shi, Y. Wang, L. Chrostowski, N. A. F. Jaeger, “2 × 2 Adiabatic 3-dB Coupler on Silicon-on-Insulator Rib Waveguides,” Proc. SPIE8915 (2013).
  22. D. Lancaster, “The Math Behind Bezier Cubic Splines,” http://www.tinaja.com/glib/cubemath.pdf .
  23. Y. Wang, J. Flueckiger, C. Lin, L. Chrostowski, “Universal Grating Coupler Design,” Proc. SPIE8915 (2013).

2013 (4)

2012 (3)

2010 (2)

2008 (1)

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

2007 (2)

Y. Tanushi, S. Yokoyama, “Compact Multimode Optical Ring Resonators for Interconnection on Silicon Chips,” Jpn. J. of Appl. Phys. 46(4B), 2364–2368 (2007).
[CrossRef]

P. Dong, S. F. Preble, M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[CrossRef] [PubMed]

2005 (3)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator.” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides With Small Cross Section,” J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

M. Greenberg, M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Exp. 13(23), 9381–9387 (2005).
[CrossRef]

2004 (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

2003 (2)

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, H. Kurz, “Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

A. Melloni, P. Monguzzi, R. Costa, M. Martinelli, “Design of curved waveguides: the matched bend.” J. Opt. Soc. Am. A 20, 130–137 (2003).
[CrossRef]

1995 (1)

L. Soldano, E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bergman, K.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Biberman, A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bolivar, P. H.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, H. Kurz, “Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Bolle, C.

Burrows, E. C.

Campenhout, J. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Chan, S. P.

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Chou, C.-Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Chrostowski, L.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, N. A. F. Jaeger, “2 × 2 Adiabatic 3-dB Coupler on Silicon-on-Insulator Rib Waveguides,” Proc. SPIE8915 (2013).

Y. Wang, J. Flueckiger, C. Lin, L. Chrostowski, “Universal Grating Coupler Design,” Proc. SPIE8915 (2013).

Costa, R.

Da Ros, F.

Dadap, J. I.

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing.” Opt. Lett. 38(11), 1854–1856 (2013).
[CrossRef] [PubMed]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Dai, D.

Ding, Y.

Dong, P.

Driscoll, J. B.

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Esmaeelpour, M.

Essiambre, R.-j.

Flueckiger, J.

Y. Wang, J. Flueckiger, C. Lin, L. Chrostowski, “Universal Grating Coupler Design,” Proc. SPIE8915 (2013).

Foschini, G. J.

Gabrielli, L. H.

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends.” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Gnauck, A. H.

Goebel, B.

Green, W. M. J.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Greenberg, M.

M. Greenberg, M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Exp. 13(23), 9381–9387 (2005).
[CrossRef]

Grote, R. R.

Henschel, W.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, H. Kurz, “Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Hsieh, I.-W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Hu, T.

Huang, B.

Ishizaka, Y.

Jaeger, N. A. F.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, N. A. F. Jaeger, “2 × 2 Adiabatic 3-dB Coupler on Silicon-on-Insulator Rib Waveguides,” Proc. SPIE8915 (2013).

Jiang, G.

Jiang, X.

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends.” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Kawaguchi, Y.

Koshiba, M.

Kramer, G.

Kurz, H.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, H. Kurz, “Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Lee, B. G.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Lim, S. T.

Lin, C.

Y. Wang, J. Flueckiger, C. Lin, L. Chrostowski, “Universal Grating Coupler Design,” Proc. SPIE8915 (2013).

Lingle, R.

Lipson, M.

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends.” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

P. Dong, S. F. Preble, M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator.” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends.” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Lu, M.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Martinelli, M.

Mccurdy, A. H.

Melloni, A.

Member, S.

Monguzzi, P.

Monster, M.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, H. Kurz, “Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Mumtaz, S.

Orenstein, M.

M. Greenberg, M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Exp. 13(23), 9381–9387 (2005).
[CrossRef]

Osgood, R. M.

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing.” Opt. Lett. 38(11), 1854–1856 (2013).
[CrossRef] [PubMed]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Ou, H.

Passaro, V. M. N.

Peckham, D. W.

Pennings, E.

L. Soldano, E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Peucheret, C.

Png, C. E.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator.” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

Qiu, H.

Randel, S.

Reano, R. M.

Reed, G. T.

Ruege, A. C.

Ryf, R.

Saitoh, K.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator.” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Shao, H.

Shi, W.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, N. A. F. Jaeger, “2 × 2 Adiabatic 3-dB Coupler on Silicon-on-Insulator Rib Waveguides,” Proc. SPIE8915 (2013).

Shi, Y.

Sierra, A.

Soldano, L.

L. Soldano, E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Souhan, B.

Sumetsky, M.

M. Sumetsky, “Theory of adiabatic optical fiber and microfiber tapers,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference” Technical Digest (CD) (Optical Society of America, 2006), paper OTuH2.

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Tanushi, Y.

Y. Tanushi, S. Yokoyama, “Compact Multimode Optical Ring Resonators for Interconnection on Silicon Chips,” Jpn. J. of Appl. Phys. 46(4B), 2364–2368 (2007).
[CrossRef]

Thourhout, D. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Uematsu, T.

Vlasov, Y. a.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Vorckel, A.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, H. Kurz, “Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Wang, J.

Wang, Y.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, N. A. F. Jaeger, “2 × 2 Adiabatic 3-dB Coupler on Silicon-on-Insulator Rib Waveguides,” Proc. SPIE8915 (2013).

Y. Wang, J. Flueckiger, C. Lin, L. Chrostowski, “Universal Grating Coupler Design,” Proc. SPIE8915 (2013).

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Winzer, P. J.

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Xu, J.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator.” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Yang, J.

Yokoyama, S.

Y. Tanushi, S. Yokoyama, “Compact Multimode Optical Ring Resonators for Interconnection on Silicon Chips,” Jpn. J. of Appl. Phys. 46(4B), 2364–2368 (2007).
[CrossRef]

Yu, H.

Yu, P.

Yun, H.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, N. A. F. Jaeger, “2 × 2 Adiabatic 3-dB Coupler on Silicon-on-Insulator Rib Waveguides,” Proc. SPIE8915 (2013).

IEEE Photon. Technol. Lett. (3)

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. a. Vlasov, R. M. Osgood, K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, H. Kurz, “Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. A (1)

Jpn. J. of Appl. Phys. (1)

Y. Tanushi, S. Yokoyama, “Compact Multimode Optical Ring Resonators for Interconnection on Silicon Chips,” Jpn. J. of Appl. Phys. 46(4B), 2364–2368 (2007).
[CrossRef]

Nat. Commun. (1)

L. H. Gabrielli, D. Liu, S. G. Johnson, M. Lipson, “On-chip transformation optics for multimode waveguide bends.” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator.” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Opt. Exp. (1)

M. Greenberg, M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Exp. 13(23), 9381–9387 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (4)

M. Sumetsky, “Theory of adiabatic optical fiber and microfiber tapers,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference” Technical Digest (CD) (Optical Society of America, 2006), paper OTuH2.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, N. A. F. Jaeger, “2 × 2 Adiabatic 3-dB Coupler on Silicon-on-Insulator Rib Waveguides,” Proc. SPIE8915 (2013).

D. Lancaster, “The Math Behind Bezier Cubic Splines,” http://www.tinaja.com/glib/cubemath.pdf .

Y. Wang, J. Flueckiger, C. Lin, L. Chrostowski, “Universal Grating Coupler Design,” Proc. SPIE8915 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A ring resonator composed of waveguides supporting two TE modes. In this example, the first-order mode (TE01) is resonant and critically coupled to the drop port of the filter, while the fundamental mode (TE00) is off resonance and passes to the through port.

Fig. 2
Fig. 2

The common κ2 value for TE00 and TE01 in a directional coupler of length L. The directional coupler gap and waveguide widths are varied to demonstrate that some control over the equal κ2 values can be achieved. During simulations the waveguide height and wavelength used were 220 nm and 1550 nm, respectively.

Fig. 3
Fig. 3

The layout and operation of the ADC multiplexer design. Here W1 and W2 are the widths of the ADC input and bus waveguides, respectively; t is the thickness offset of the bus waveguide; g is the gap between the two coupler waveguides.

Fig. 4
Fig. 4

The coupling efficiency of tapered and uniform asymmetric directional couplers. FDTD and EME simulations are used to plot coupling fraction against (a) device length, and (b) fabrication errors in W1 and W2.

Fig. 5
Fig. 5

Crosstalk between the TE00 and TE01 modes in a semi-circular waveguide connected to straight waveguides. Beating is noticed in the crosstalk response, which is attributed to self-imaging in the bend. Data was obtained using the EME method.

Fig. 6
Fig. 6

The construction of the 90° Bezier curve. In the image the four points defining the curve, as well as the curve itself are displayed.

Fig. 7
Fig. 7

The design of adiabatic Bezier curves: (a) shows the shape of the bends for various values of B, and (b) shows the corresponding level of crosstalk in a 90° bend simulated using FDTD.

Fig. 8
Fig. 8

The multimode ring resonator mask layout used for fabrication. The different components and dimensions of the device are labelled.

Fig. 9
Fig. 9

Normalized optical output for the TE00 and TE01 modes from (a) the through port, and (b) the drop port. Crosstalk (XT) results are also presented.

Tables (1)

Tables Icon

Table 1 Theoretical and experimental properties of the TE00 and TE01 modes in the multi-mode ring resonator. The wavelengths considered range from 1.54 μm to 1.56 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T drop = P drop P in = α κ 4 2 α t 2 cos ( θ ) ( α 2 t 4 + 1 )
Q = π L eff n eff λ 0 arccos ( 1 + t 4 α 2 4 t 2 α 2 t 2 α )
κ T E 00 = sin [ π 2 ( L L c T E 00 ) ]
κ T E 01 = sin [ π 2 ( L L c T E 01 ) ]
sin [ π 2 ( L L c T E 00 ) ] = sin [ π π 2 ( L L c T E 01 ) ]
L = 2 L c T E 01 L c T E 00 L c T E 00 + L c T E 01

Metrics