Abstract

In this article, Structured Laser Illumination Planar Imaging (SLIPI) is used in combination with the LIF/Mie ratio technique for extracting a reliable two-dimensional mapping of the droplets Sauter Mean Diameter (SMD). We show that even for the case of a fairly dilute spray, where single scattering events are in majority, the conventional LIF/Mie technique still remains largely affected by errors introduced by multiple light scattering. To remove this unwanted light intensity on both the LIF and Mie images SLIPI is used prior to apply the image ratio. For the first time, the SLIPI LIF/Mie results are calibrated and compared with measurement data from Phase Doppler Interferometry (PDI).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Chigier, “An assessment of spray technology-editorial,” Atomization Sprays 3(4), 365–371 (1993).
  2. W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23(5), 583–590 (1984).
    [CrossRef]
  3. N. Roth, K. Anders, A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micrometer range,” J. Laser Appl. 2(1), 37–42 (1990).
    [CrossRef]
  4. R. A. Dobbins, L. Crocco, I. Glassmans, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1(8), 1882–1886 (1963).
    [CrossRef]
  5. J. T. Kashdan, J. S. Shrimpton, A. Whybrew, “A digital image analysis technique for quantitative characterisation of high-speed sprays,” Opt. Lasers Eng. 45(1), 106–115 (2007).
    [CrossRef]
  6. T. Shoba, C. Crua, M. Heikal, M. Gold, “Optical characterisation of diesel, RME and kerosene sprays by microscopic imaging,” in 24th European Conference on Liquid Atomization and Spray Systems (ILASS) (Portugal, 2011).
  7. C. N. Yeh, H. Kosaka, T. Kamimoto, “A fluorescence/scattering imaging technique for instantaneous 2-D measurements of particle size distribution in a transient spray,” in Proceedings of the 3rd Congress on Optical Particle Sizing (Japan, 1993), pp. 355–361.
  8. T. Kamimoto, “Diagnostics of transient sprays by means of laser sheet techniques,” in International Symposium COMODIA94, pp. 33–41 (1994).
  9. S. V. Sankar, K. E. Maher, D. M. Robart, W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121(3), 409–414 (1999).
    [CrossRef]
  10. P. Le Gal, N. Farrugia, D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
    [CrossRef]
  11. R. Domann, Y. Hardalupas, “Quantitative measurement of planar droplet sauter mean diameter in sprays using Planar droplet sizing,” Part. Part. Syst. Charact. 20(3), 209–218 (2003).
    [CrossRef]
  12. M. C. Jermy, D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
    [CrossRef]
  13. B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
    [CrossRef]
  14. S. Park, H. Cho, I. Yoon, K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
    [CrossRef]
  15. R. Domann, Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18(1), 3–11 (2001).
    [CrossRef]
  16. G. Charalampous, Y. Hardalupas, “Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique),” Appl. Opt. 50(9), 1197–1209 (2011).
    [CrossRef] [PubMed]
  17. G. Charalampous, Y. Hardalupas, “Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique),” Appl. Opt. 50(20), 3622–3637 (2011).
    [CrossRef] [PubMed]
  18. W. Zeng, M. Xu, Y. Zhang, Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/Mie techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
    [CrossRef]
  19. A. Malarski, B. Schürer, I. Schmitz, L. Zigan, A. Flügel, A. Leipertz, “Laser sheet dropsizing based on two-dimensional Raman and Mie scattering,” Appl. Opt. 48(10), 1853–1860 (2009).
    [CrossRef] [PubMed]
  20. D. L. Hofeldt, “Full-field measurements of particle size distributions. II: Experimental comparison of the polarization ratio and scattered intensity methods,” Appl. Opt. 32(36), 7559–7567 (1993).
    [CrossRef] [PubMed]
  21. S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
    [CrossRef]
  22. E. Kristensson, Structured Laser Illumination Planar Imaging: Applications for spray diagnostics (Ph.D. Thesis, Lund University, 2012).
  23. E. Berrocal, I. Meglinski, M. Jermy, “New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics,” Opt. Express 13(23), 9181–9195 (2005).
    [CrossRef] [PubMed]
  24. D. Stepowski, O. Werquin, C. Roze, and T. Girasole, “Account for extinction and multiple scattering in planar droplet sizing of dense sprays,” in 13th International Symposium of Laser Techniques to Fluids Mechanics (Lisbon, 2006), paper 1061.
  25. E. Berrocal, E. Kristensson, M. Richter, M. Linne, M. Aldén, “Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays,” Opt. Express 16(22), 17870–17881 (2008).
    [CrossRef] [PubMed]
  26. E. Kristensson, E. Berrocal, M. Richter, M. Alden, “Nanosecond structured laser illumination planar imaging for single-shot imaging of dense sprays,” Atomization Sprays 20(4), 337–343 (2010).
    [CrossRef]
  27. E. Berrocal, E. Kristensson, P. Hottenbach, M. Aldén, G. Grünefeld, “Quantitative imaging of a non-combusting Diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109(4), 683–694 (2012).
    [CrossRef]
  28. E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Aldén, M. Linne, “Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media,” Opt. Express 19(14), 13647–13663 (2011).
    [CrossRef] [PubMed]
  29. M. A. A. Neil, R. Juskaitis, T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  30. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
    [CrossRef] [PubMed]

2013

W. Zeng, M. Xu, Y. Zhang, Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/Mie techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[CrossRef]

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

2012

E. Berrocal, E. Kristensson, P. Hottenbach, M. Aldén, G. Grünefeld, “Quantitative imaging of a non-combusting Diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109(4), 683–694 (2012).
[CrossRef]

2011

2010

E. Kristensson, E. Berrocal, M. Richter, M. Alden, “Nanosecond structured laser illumination planar imaging for single-shot imaging of dense sprays,” Atomization Sprays 20(4), 337–343 (2010).
[CrossRef]

2009

2008

2007

J. T. Kashdan, J. S. Shrimpton, A. Whybrew, “A digital image analysis technique for quantitative characterisation of high-speed sprays,” Opt. Lasers Eng. 45(1), 106–115 (2007).
[CrossRef]

2005

2003

R. Domann, Y. Hardalupas, “Quantitative measurement of planar droplet sauter mean diameter in sprays using Planar droplet sizing,” Part. Part. Syst. Charact. 20(3), 209–218 (2003).
[CrossRef]

2002

S. Park, H. Cho, I. Yoon, K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[CrossRef]

2001

R. Domann, Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18(1), 3–11 (2001).
[CrossRef]

B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
[CrossRef]

2000

M. C. Jermy, D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
[CrossRef]

1999

S. V. Sankar, K. E. Maher, D. M. Robart, W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121(3), 409–414 (1999).
[CrossRef]

P. Le Gal, N. Farrugia, D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[CrossRef]

1997

1993

1990

N. Roth, K. Anders, A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micrometer range,” J. Laser Appl. 2(1), 37–42 (1990).
[CrossRef]

1984

W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23(5), 583–590 (1984).
[CrossRef]

1963

R. A. Dobbins, L. Crocco, I. Glassmans, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1(8), 1882–1886 (1963).
[CrossRef]

Alden, M.

E. Kristensson, E. Berrocal, M. Richter, M. Alden, “Nanosecond structured laser illumination planar imaging for single-shot imaging of dense sprays,” Atomization Sprays 20(4), 337–343 (2010).
[CrossRef]

Aldén, M.

Anders, K.

N. Roth, K. Anders, A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micrometer range,” J. Laser Appl. 2(1), 37–42 (1990).
[CrossRef]

Araneo, L.

Bachalo, W. D.

S. V. Sankar, K. E. Maher, D. M. Robart, W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121(3), 409–414 (1999).
[CrossRef]

W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23(5), 583–590 (1984).
[CrossRef]

Bakic, S.

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

Bareiss, S.

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

Berrocal, E.

Bevilacqua, F.

Bork, B.

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

Charalampous, G.

Chigier, N.

N. Chigier, “An assessment of spray technology-editorial,” Atomization Sprays 3(4), 365–371 (1993).

Cho, H.

S. Park, H. Cho, I. Yoon, K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[CrossRef]

Crocco, L.

R. A. Dobbins, L. Crocco, I. Glassmans, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1(8), 1882–1886 (1963).
[CrossRef]

Crua, C.

T. Shoba, C. Crua, M. Heikal, M. Gold, “Optical characterisation of diesel, RME and kerosene sprays by microscopic imaging,” in 24th European Conference on Liquid Atomization and Spray Systems (ILASS) (Portugal, 2011).

Cuccia, D. J.

Dobbins, R. A.

R. A. Dobbins, L. Crocco, I. Glassmans, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1(8), 1882–1886 (1963).
[CrossRef]

Domann, R.

R. Domann, Y. Hardalupas, “Quantitative measurement of planar droplet sauter mean diameter in sprays using Planar droplet sizing,” Part. Part. Syst. Charact. 20(3), 209–218 (2003).
[CrossRef]

R. Domann, Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18(1), 3–11 (2001).
[CrossRef]

Dreizler, A.

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

Durkin, A. J.

Farrugia, N.

P. Le Gal, N. Farrugia, D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[CrossRef]

Flügel, A.

Frohn, A.

N. Roth, K. Anders, A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micrometer range,” J. Laser Appl. 2(1), 37–42 (1990).
[CrossRef]

Glassmans, I.

R. A. Dobbins, L. Crocco, I. Glassmans, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1(8), 1882–1886 (1963).
[CrossRef]

Gold, M.

T. Shoba, C. Crua, M. Heikal, M. Gold, “Optical characterisation of diesel, RME and kerosene sprays by microscopic imaging,” in 24th European Conference on Liquid Atomization and Spray Systems (ILASS) (Portugal, 2011).

Greenhalgh, D. A.

M. C. Jermy, D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
[CrossRef]

P. Le Gal, N. Farrugia, D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[CrossRef]

Grünefeld, G.

E. Berrocal, E. Kristensson, P. Hottenbach, M. Aldén, G. Grünefeld, “Quantitative imaging of a non-combusting Diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109(4), 683–694 (2012).
[CrossRef]

Hardalupas, Y.

G. Charalampous, Y. Hardalupas, “Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique),” Appl. Opt. 50(9), 1197–1209 (2011).
[CrossRef] [PubMed]

G. Charalampous, Y. Hardalupas, “Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique),” Appl. Opt. 50(20), 3622–3637 (2011).
[CrossRef] [PubMed]

R. Domann, Y. Hardalupas, “Quantitative measurement of planar droplet sauter mean diameter in sprays using Planar droplet sizing,” Part. Part. Syst. Charact. 20(3), 209–218 (2003).
[CrossRef]

R. Domann, Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18(1), 3–11 (2001).
[CrossRef]

Heikal, M.

T. Shoba, C. Crua, M. Heikal, M. Gold, “Optical characterisation of diesel, RME and kerosene sprays by microscopic imaging,” in 24th European Conference on Liquid Atomization and Spray Systems (ILASS) (Portugal, 2011).

Hofeldt, D. L.

Hottenbach, P.

E. Berrocal, E. Kristensson, P. Hottenbach, M. Aldén, G. Grünefeld, “Quantitative imaging of a non-combusting Diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109(4), 683–694 (2012).
[CrossRef]

Houser, M. J.

W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23(5), 583–590 (1984).
[CrossRef]

Irsig, R.

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

Jermy, M.

Jermy, M. C.

M. C. Jermy, D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
[CrossRef]

Juskaitis, R.

Kamimoto, T.

C. N. Yeh, H. Kosaka, T. Kamimoto, “A fluorescence/scattering imaging technique for instantaneous 2-D measurements of particle size distribution in a transient spray,” in Proceedings of the 3rd Congress on Optical Particle Sizing (Japan, 1993), pp. 355–361.

T. Kamimoto, “Diagnostics of transient sprays by means of laser sheet techniques,” in International Symposium COMODIA94, pp. 33–41 (1994).

Kashdan, J. T.

J. T. Kashdan, J. S. Shrimpton, A. Whybrew, “A digital image analysis technique for quantitative characterisation of high-speed sprays,” Opt. Lasers Eng. 45(1), 106–115 (2007).
[CrossRef]

Kosaka, H.

C. N. Yeh, H. Kosaka, T. Kamimoto, “A fluorescence/scattering imaging technique for instantaneous 2-D measurements of particle size distribution in a transient spray,” in Proceedings of the 3rd Congress on Optical Particle Sizing (Japan, 1993), pp. 355–361.

Kristensson, E.

E. Berrocal, E. Kristensson, P. Hottenbach, M. Aldén, G. Grünefeld, “Quantitative imaging of a non-combusting Diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109(4), 683–694 (2012).
[CrossRef]

E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Aldén, M. Linne, “Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media,” Opt. Express 19(14), 13647–13663 (2011).
[CrossRef] [PubMed]

E. Kristensson, E. Berrocal, M. Richter, M. Alden, “Nanosecond structured laser illumination planar imaging for single-shot imaging of dense sprays,” Atomization Sprays 20(4), 337–343 (2010).
[CrossRef]

E. Berrocal, E. Kristensson, M. Richter, M. Linne, M. Aldén, “Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays,” Opt. Express 16(22), 17870–17881 (2008).
[CrossRef] [PubMed]

Le Gal, P.

P. Le Gal, N. Farrugia, D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[CrossRef]

Leipertz, A.

Linne, M.

Maher, K. E.

S. V. Sankar, K. E. Maher, D. M. Robart, W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121(3), 409–414 (1999).
[CrossRef]

Malarski, A.

Manin, J.

Meglinski, I.

Min, K.

S. Park, H. Cho, I. Yoon, K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[CrossRef]

Neil, M. A. A.

Park, S.

S. Park, H. Cho, I. Yoon, K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[CrossRef]

Richter, M.

Robart, D. M.

S. V. Sankar, K. E. Maher, D. M. Robart, W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121(3), 409–414 (1999).
[CrossRef]

Roth, N.

N. Roth, K. Anders, A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micrometer range,” J. Laser Appl. 2(1), 37–42 (1990).
[CrossRef]

Sankar, S. V.

S. V. Sankar, K. E. Maher, D. M. Robart, W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121(3), 409–414 (1999).
[CrossRef]

Schmitz, I.

Schürer, B.

Shoba, T.

T. Shoba, C. Crua, M. Heikal, M. Gold, “Optical characterisation of diesel, RME and kerosene sprays by microscopic imaging,” in 24th European Conference on Liquid Atomization and Spray Systems (ILASS) (Portugal, 2011).

Shrimpton, J. S.

J. T. Kashdan, J. S. Shrimpton, A. Whybrew, “A digital image analysis technique for quantitative characterisation of high-speed sprays,” Opt. Lasers Eng. 45(1), 106–115 (2007).
[CrossRef]

Sick, V.

B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
[CrossRef]

Stojkovic, B. D.

B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
[CrossRef]

Tiggesbaumker, J.

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

Tromberg, B. J.

Tropea, C.

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

Wang, Z.

W. Zeng, M. Xu, Y. Zhang, Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/Mie techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[CrossRef]

Whybrew, A.

J. T. Kashdan, J. S. Shrimpton, A. Whybrew, “A digital image analysis technique for quantitative characterisation of high-speed sprays,” Opt. Lasers Eng. 45(1), 106–115 (2007).
[CrossRef]

Wilson, T.

Xu, M.

W. Zeng, M. Xu, Y. Zhang, Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/Mie techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[CrossRef]

Yeh, C. N.

C. N. Yeh, H. Kosaka, T. Kamimoto, “A fluorescence/scattering imaging technique for instantaneous 2-D measurements of particle size distribution in a transient spray,” in Proceedings of the 3rd Congress on Optical Particle Sizing (Japan, 1993), pp. 355–361.

Yoon, I.

S. Park, H. Cho, I. Yoon, K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[CrossRef]

Zeng, W.

W. Zeng, M. Xu, Y. Zhang, Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/Mie techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[CrossRef]

Zhang, Y.

W. Zeng, M. Xu, Y. Zhang, Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/Mie techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[CrossRef]

Zigan, L.

AIAA J.

R. A. Dobbins, L. Crocco, I. Glassmans, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1(8), 1882–1886 (1963).
[CrossRef]

Appl. Opt.

Appl. Phys. B

E. Berrocal, E. Kristensson, P. Hottenbach, M. Aldén, G. Grünefeld, “Quantitative imaging of a non-combusting Diesel spray using structured laser illumination planar imaging,” Appl. Phys. B 109(4), 683–694 (2012).
[CrossRef]

M. C. Jermy, D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
[CrossRef]

B. D. Stojkovic, V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
[CrossRef]

Atomization Sprays

N. Chigier, “An assessment of spray technology-editorial,” Atomization Sprays 3(4), 365–371 (1993).

E. Kristensson, E. Berrocal, M. Richter, M. Alden, “Nanosecond structured laser illumination planar imaging for single-shot imaging of dense sprays,” Atomization Sprays 20(4), 337–343 (2010).
[CrossRef]

J. Eng. Gas Turbines Power

S. V. Sankar, K. E. Maher, D. M. Robart, W. D. Bachalo, “Rapid characterization of fuel atomizers using an optical patternator,” J. Eng. Gas Turbines Power 121(3), 409–414 (1999).
[CrossRef]

J. Laser Appl.

N. Roth, K. Anders, A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micrometer range,” J. Laser Appl. 2(1), 37–42 (1990).
[CrossRef]

Meas. Sci. Technol.

S. Park, H. Cho, I. Yoon, K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[CrossRef]

S. Bareiss, B. Bork, S. Bakic, C. Tropea, R. Irsig, J. Tiggesbaumker, A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[CrossRef]

Opt. Eng.

W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23(5), 583–590 (1984).
[CrossRef]

Opt. Express

Opt. Laser Technol.

P. Le Gal, N. Farrugia, D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[CrossRef]

Opt. Lasers Eng.

J. T. Kashdan, J. S. Shrimpton, A. Whybrew, “A digital image analysis technique for quantitative characterisation of high-speed sprays,” Opt. Lasers Eng. 45(1), 106–115 (2007).
[CrossRef]

Opt. Lett.

Part. Part. Syst. Charact.

R. Domann, Y. Hardalupas, “Quantitative measurement of planar droplet sauter mean diameter in sprays using Planar droplet sizing,” Part. Part. Syst. Charact. 20(3), 209–218 (2003).
[CrossRef]

R. Domann, Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18(1), 3–11 (2001).
[CrossRef]

Proc. Combust. Inst.

W. Zeng, M. Xu, Y. Zhang, Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/Mie techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[CrossRef]

Other

D. Stepowski, O. Werquin, C. Roze, and T. Girasole, “Account for extinction and multiple scattering in planar droplet sizing of dense sprays,” in 13th International Symposium of Laser Techniques to Fluids Mechanics (Lisbon, 2006), paper 1061.

E. Kristensson, Structured Laser Illumination Planar Imaging: Applications for spray diagnostics (Ph.D. Thesis, Lund University, 2012).

T. Shoba, C. Crua, M. Heikal, M. Gold, “Optical characterisation of diesel, RME and kerosene sprays by microscopic imaging,” in 24th European Conference on Liquid Atomization and Spray Systems (ILASS) (Portugal, 2011).

C. N. Yeh, H. Kosaka, T. Kamimoto, “A fluorescence/scattering imaging technique for instantaneous 2-D measurements of particle size distribution in a transient spray,” in Proceedings of the 3rd Congress on Optical Particle Sizing (Japan, 1993), pp. 355–361.

T. Kamimoto, “Diagnostics of transient sprays by means of laser sheet techniques,” in International Symposium COMODIA94, pp. 33–41 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Top-view of the SLIPI-LIF/Mie optical arrangement, together with the PDI set-up.

Fig. 2
Fig. 2

(a): Emission spectra from yellow fluorescing highlighter’s ink excited at 448 nm. The LIF signal is peaking at 517 nm. The Mie and LIF signals are filtered prior to detection, using two high-performance optical filters, FL1 and FL2 respectively. (b): Intensity decay of the laser sheet crossing a cuvette filled with dyed water for three different concentrations C1, C2 and C3. These dye concentrations were successively tested in the spray. To avoid unwanted reflections effects from the cuvette walls, SLIPI LIF is performed here.

Fig. 3
Fig. 3

(a): Top-view of the SLIPI-transmission setup is shown. (b): Incident and final intensity profiles of the laser sheet on a glass cuvette filled with dyed water solution. From these measurements the light transmission and the optical depth of the spray can be deduced along the vertical axis of the laser sheet as shown in (c). In this case, the OD is mostly close to ~1, confirming that the probed spray is dilute. Note that the vertical and horizontal dimension aspects are not equal on these images.

Fig. 4
Fig. 4

The conventional and SLIPI, LIF and Mie averaged images of the hollow-cone spray are generated by recording three modulated sub-images of both signals as shown in Fig. 4(a). These modulated images are recorded with a phase difference of 120°. The conventional images, created by averaging the three modulated sub-images, and the SLIPI images, generated by taking the root-mean square of the same images, are shown in Fig. 4(b).

Fig. 5
Fig. 5

Averaged images of the Conventional LIF/Mie and SLIPI LIF/Mie, in (a) and (b) respectively, representing the relative SMD of droplets distribution. Effects from the multiple light scattering are apparent on the conventional SMD image. By efficiently removing the intensity contribution from multiple light scattering those effects are suppressed, leading to a reliable SMD mapping of the hollow-cone spray as shown in (b).

Fig. 6
Fig. 6

Effect of dye concentration and laser power on the relative SMD distributions. Figures 6(a) and 6(b) show the conventional and SLIPI LIF/Mie ratios respectively, for the dye concentrations C1e = 0.36 cm−1), C2e = 0.60 cm−1) and C3e = 1.20 cm−1). Figures 6(c) and 6(d) show the conventional and SLIPI LIF/Mie ratio respectively, at laser power P1 = 200 mW, P2 = 500 mW and P3 = 800 mW.

Fig. 7
Fig. 7

Droplet size measurement using PDI. (a) Droplets SMD along the x-axis from one edge of the spray (set as −3 cm) towards its center (0 cm). The SMD is calculated from the droplet size distribution measured for every millimeter. An example of such distribution at position x = 2.5 cm (as indicated by the red dot in the Fig. 7(a)) is given in (b) where the resulting SMD = 28.4 µm.

Fig. 8
Fig. 8

Plots of the SMD values measured with PDI against the corresponding LIF/Mie ratio. In (a) the conventional case shows two SMD solutions for a single LIF/Mie ratio. In this case, the measurement cannot be calibrated. In (b) the SLIPI case shows a unique solution for each LIF/Mie ratio. This confirms the possibility of extracting a reliable calibration curve that can be used to deduce the absolute droplets SMD from Fig. 5(b).

Fig. 9
Fig. 9

Two-dimensional map of the absolute droplets SMD for a indicated on hollow-cone water spray running at 20 bars injection pressure. The result is obtained from SLIPI LIF/Mie after calibration with PDI data. The PDI measurements were performed at 3.5 cm below the nozzle tip, along the black dot line the image.

Fig. 10
Fig. 10

Comparison of the PDI results with both the non-calibrated and the calibrated SLIPI data. A magnification of the non-calibrated ratio data between −1 cm and 0.5 cm shows that the SLIPI ratio remains non-zero in this region.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)= I C (x,y)+ I S (x,y)sin(2πxν+ϕ)
I S = 2 3 [ ( I 0 I 120 ) 2 + ( I 0 I 240 ) 2 + ( I 120 I 240 ) 2 ] 1 2
I C = I 0 + I 120 + I 240 3
SMD= 0 D i 3 0 D i 2 = S LIF S Mie K LIF K Mie

Metrics