Abstract

I theoretically study the behavior of strong pulses exciting emitters inside a cavity. The ensemble is supposed to be inhomogeneously broadened and the cavity matched finding application in quantum storage of optical or RF photons. My analysis is based on energy and pulse area conservation rules predicting important distortions for specific areas. It is well supported by numerical simulations. I propose a qualitative interpretation in terms of slow-light. The analogy with the free space situation is remarkable.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Haroche and J. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford Graduate Texts (OUP Oxford, 2006).
    [CrossRef]
  2. W. J. Kozlovsky, C. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd: YAG laser using monolithic MgO: LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
    [CrossRef]
  3. M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
    [CrossRef]
  4. S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optimal QED cavity,” Phys. Rev. A 82, 022311 (2010).
    [CrossRef]
  5. M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
    [CrossRef]
  6. D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
    [CrossRef]
  7. Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
    [CrossRef]
  8. R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
    [CrossRef] [PubMed]
  9. P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
    [CrossRef]
  10. Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
    [CrossRef] [PubMed]
  11. M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013).
    [CrossRef]
  12. B. Julsgaard, C. Grezes, P. Bertet, and K. Mølmer, “Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble,” Phys. Rev. Lett. 110, 250503 (2013).
    [CrossRef] [PubMed]
  13. J. Van Wyk, E. Reynhardt, G. High, and I. Kiflawi, “The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond,” J. Phys. D Appl. Phys. 30, 1790 (1997).
    [CrossRef]
  14. W. Gao, X.-D. Tan, M.-F. Wang, and Y.-Z. Zheng, “Quantum memory with natural inhomogeneous broadening in an optical cavity,” Int. J. Theor. Phys. 52, 2092–2098 (2013).
    [CrossRef]
  15. S. A. Moiseev, “Off-resonant raman-echo quantum memory for inhomogeneously broadened atoms in a cavity,” Phys. Rev. A 88, 012304 (2013).
    [CrossRef]
  16. L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms (Courier Dover, 1987).
  17. S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
    [CrossRef]
  18. S. A. Moiseev, “Quantum memory for intense light fields in photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260 (2004).
  19. J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
    [CrossRef]
  20. P. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. 17, 301–306 (1981).
    [CrossRef]
  21. S. Zakharov, “Interaction of ultrashort light pulses with thin-film resonant structures,” Zh. Eksp. Teor. Fiz 108, 829–841 (1995).
  22. V. A. Goryachev and S. M. Zakharov, “Dynamics of transmission of ultrashort light pulses by thin-film cavity structures,” Quantum Electron. 27, 245–248 (1997).
    [CrossRef]
  23. S. Stenholm and W. E. Lamb, “Semiclassical theory of a high-intensity laser,” Phys. Rev. 181, 618–635 (1969).
    [CrossRef]
  24. F. Gires and P. Tournois, “Interfèromètre utilisable pour la compression d’impulsions lumineuses modulées en fréquence,” C. R. Acad. Sci. Paris 258, 6112–6115 (1964).
  25. D. M. Pozar, Microwave Engineering, 3 (John Wiley, 2005).
  26. C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, “Instability and pulse area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. Lett. 87, 253602 (2001).
    [CrossRef] [PubMed]
  27. C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A 67, 063811 (2003).
    [CrossRef]
  28. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
    [CrossRef]
  29. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
    [CrossRef] [PubMed]
  30. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1995).
  31. A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in λ-type optically dense atomic media. I. cavity model,” Phys. Rev. A 76, 033804 (2007).
    [CrossRef]
  32. B. Julsgaard and K. Mølmer, “Reflectivity and transmissivity of a cavity coupled to two-level systems: Coherence properties and the influence of phase decay,” Phys. Rev. A 85, 013844 (2012).
    [CrossRef]
  33. J. Eberly, “Area theorem rederived,” Opt. Express 2, 173–176 (1998).
    [CrossRef] [PubMed]
  34. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
    [CrossRef]
  35. J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
    [CrossRef]
  36. L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58, 2733–2744 (1998).
    [CrossRef]
  37. C. P. Slichter, Principles of Magnetic Resonance (Springer, 1990), Vol. 1.
    [CrossRef]
  38. K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A 74, 033818 (2006).
    [CrossRef]
  39. H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Express 18, 23763–23775 (2010).
    [CrossRef] [PubMed]
  40. M. Sabooni, Q. Li, L. Rippe, and S. Kröll, “Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity,” arXiv preprint arXiv:1304.4456 (2013).
  41. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
    [CrossRef]
  42. F. C. Spano and W. S. Warren, “Preparation of constant-bandwidth total inversion, independent of optical density, with phase-modulated laser pulses,” Phys. Rev. A 37, 1013–1016 (1988).
    [CrossRef] [PubMed]

2013 (5)

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[CrossRef]

M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013).
[CrossRef]

B. Julsgaard, C. Grezes, P. Bertet, and K. Mølmer, “Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble,” Phys. Rev. Lett. 110, 250503 (2013).
[CrossRef] [PubMed]

W. Gao, X.-D. Tan, M.-F. Wang, and Y.-Z. Zheng, “Quantum memory with natural inhomogeneous broadening in an optical cavity,” Int. J. Theor. Phys. 52, 2092–2098 (2013).
[CrossRef]

S. A. Moiseev, “Off-resonant raman-echo quantum memory for inhomogeneously broadened atoms in a cavity,” Phys. Rev. A 88, 012304 (2013).
[CrossRef]

2012 (1)

B. Julsgaard and K. Mølmer, “Reflectivity and transmissivity of a cavity coupled to two-level systems: Coherence properties and the influence of phase decay,” Phys. Rev. A 85, 013844 (2012).
[CrossRef]

2011 (4)

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[CrossRef]

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

2010 (6)

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
[CrossRef]

S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optimal QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
[CrossRef]

H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Express 18, 23763–23775 (2010).
[CrossRef] [PubMed]

2009 (1)

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

2007 (1)

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in λ-type optically dense atomic media. I. cavity model,” Phys. Rev. A 76, 033804 (2007).
[CrossRef]

2006 (1)

K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A 74, 033818 (2006).
[CrossRef]

2004 (1)

S. A. Moiseev, “Quantum memory for intense light fields in photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260 (2004).

2003 (1)

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A 67, 063811 (2003).
[CrossRef]

2001 (1)

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, “Instability and pulse area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

1998 (2)

L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58, 2733–2744 (1998).
[CrossRef]

J. Eberly, “Area theorem rederived,” Opt. Express 2, 173–176 (1998).
[CrossRef] [PubMed]

1997 (2)

V. A. Goryachev and S. M. Zakharov, “Dynamics of transmission of ultrashort light pulses by thin-film cavity structures,” Quantum Electron. 27, 245–248 (1997).
[CrossRef]

J. Van Wyk, E. Reynhardt, G. High, and I. Kiflawi, “The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond,” J. Phys. D Appl. Phys. 30, 1790 (1997).
[CrossRef]

1995 (1)

S. Zakharov, “Interaction of ultrashort light pulses with thin-film resonant structures,” Zh. Eksp. Teor. Fiz 108, 829–841 (1995).

1988 (2)

F. C. Spano and W. S. Warren, “Preparation of constant-bandwidth total inversion, independent of optical density, with phase-modulated laser pulses,” Phys. Rev. A 37, 1013–1016 (1988).
[CrossRef] [PubMed]

W. J. Kozlovsky, C. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd: YAG laser using monolithic MgO: LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

1985 (1)

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[CrossRef] [PubMed]

1984 (1)

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
[CrossRef]

1981 (1)

P. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. 17, 301–306 (1981).
[CrossRef]

1969 (1)

S. Stenholm and W. E. Lamb, “Semiclassical theory of a high-intensity laser,” Phys. Rev. 181, 618–635 (1969).
[CrossRef]

1967 (1)

S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
[CrossRef]

1964 (1)

F. Gires and P. Tournois, “Interfèromètre utilisable pour la compression d’impulsions lumineuses modulées en fréquence,” C. R. Acad. Sci. Paris 258, 6112–6115 (1964).

Abe, H.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Afzelius, M.

M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013).
[CrossRef]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
[CrossRef]

Allen, L.

L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms (Courier Dover, 1987).

Amsüss, R.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

André, A.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in λ-type optically dense atomic media. I. cavity model,” Phys. Rev. A 76, 033804 (2007).
[CrossRef]

Andrianov, S. N.

S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optimal QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

Auffeves, A.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Awschalom, D. D.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Barthe, M. F.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Bergonzo, P.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Bertet, P.

B. Julsgaard, C. Grezes, P. Bertet, and K. Mølmer, “Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble,” Phys. Rev. Lett. 110, 250503 (2013).
[CrossRef] [PubMed]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Boggs, B.

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A 67, 063811 (2003).
[CrossRef]

Bonarota, M.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[CrossRef]

Briggs, G. A. D.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Buckley, B. B.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Bushev, P.

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Byer, R. L.

W. J. Kozlovsky, C. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd: YAG laser using monolithic MgO: LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Chanelière, T.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[CrossRef]

J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
[CrossRef]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

Cole, J. H.

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Collett, M. J.

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[CrossRef] [PubMed]

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
[CrossRef]

Damon, V.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[CrossRef]

Dewes, A.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

DiCarlo, L.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Diniz, I.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Dréau, A.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Drummond, P.

P. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. 17, 301–306 (1981).
[CrossRef]

Eberly, J.

J. Eberly, “Area theorem rederived,” Opt. Express 2, 173–176 (1998).
[CrossRef] [PubMed]

L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms (Courier Dover, 1987).

Esteve, D.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Feofanov, A. K.

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Fischer, G.

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Frunzio, L.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Gao, W.

W. Gao, X.-D. Tan, M.-F. Wang, and Y.-Z. Zheng, “Quantum memory with natural inhomogeneous broadening in an optical cavity,” Int. J. Theor. Phys. 52, 2092–2098 (2013).
[CrossRef]

Gardiner, C. W.

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[CrossRef] [PubMed]

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
[CrossRef]

Ginossar, E.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Gires, F.

F. Gires and P. Tournois, “Interfèromètre utilisable pour la compression d’impulsions lumineuses modulées en fréquence,” C. R. Acad. Sci. Paris 258, 6112–6115 (1964).

Gorshkov, A. V.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in λ-type optically dense atomic media. I. cavity model,” Phys. Rev. A 76, 033804 (2007).
[CrossRef]

Goryachev, V. A.

V. A. Goryachev and S. M. Zakharov, “Dynamics of transmission of ultrashort light pulses by thin-film cavity structures,” Quantum Electron. 27, 245–248 (1997).
[CrossRef]

Goto, H.

H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Express 18, 23763–23775 (2010).
[CrossRef] [PubMed]

K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A 74, 033818 (2006).
[CrossRef]

Greiner, C.

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A 67, 063811 (2003).
[CrossRef]

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, “Instability and pulse area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

Grezes, C.

B. Julsgaard, C. Grezes, P. Bertet, and K. Mølmer, “Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble,” Phys. Rev. Lett. 110, 250503 (2013).
[CrossRef] [PubMed]

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Gubaidullin, F. F.

S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optimal QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

Hahn, E. L.

S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
[CrossRef]

Haroche, S.

S. Haroche and J. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford Graduate Texts (OUP Oxford, 2006).
[CrossRef]

High, G.

J. Van Wyk, E. Reynhardt, G. High, and I. Kiflawi, “The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond,” J. Phys. D Appl. Phys. 30, 1790 (1997).
[CrossRef]

Ichimura, K.

H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Express 18, 23763–23775 (2010).
[CrossRef] [PubMed]

K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A 74, 033818 (2006).
[CrossRef]

Isoya, J.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Jacques, V.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Jelezko, F.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Johansson, G.

M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013).
[CrossRef]

Julsgaard, B.

B. Julsgaard, C. Grezes, P. Bertet, and K. Mølmer, “Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble,” Phys. Rev. Lett. 110, 250503 (2013).
[CrossRef] [PubMed]

B. Julsgaard and K. Mølmer, “Reflectivity and transmissivity of a cavity coupled to two-level systems: Coherence properties and the influence of phase decay,” Phys. Rev. A 85, 013844 (2012).
[CrossRef]

Kiflawi, I.

J. Van Wyk, E. Reynhardt, G. High, and I. Kiflawi, “The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond,” J. Phys. D Appl. Phys. 30, 1790 (1997).
[CrossRef]

Koller, C.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Kometa, S. T.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[CrossRef]

Kozlovsky, W. J.

W. J. Kozlovsky, C. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd: YAG laser using monolithic MgO: LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Kröll, S.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[CrossRef]

M. Sabooni, Q. Li, L. Rippe, and S. Kröll, “Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity,” arXiv preprint arXiv:1304.4456 (2013).

Kubo, Y.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Lamb, W. E.

S. Stenholm and W. E. Lamb, “Semiclassical theory of a high-intensity laser,” Phys. Rev. 181, 618–635 (1969).
[CrossRef]

Le Gouët, J.-L.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[CrossRef]

J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
[CrossRef]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

Li, Q.

M. Sabooni, Q. Li, L. Rippe, and S. Kröll, “Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity,” arXiv preprint arXiv:1304.4456 (2013).

Lloyd, S.

L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58, 2733–2744 (1998).
[CrossRef]

Loftus, T.

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, “Instability and pulse area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

Louchet-Chauvet, A.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[CrossRef]

Lukashenko, A.

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Lukin, M. D.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in λ-type optically dense atomic media. I. cavity model,” Phys. Rev. A 76, 033804 (2007).
[CrossRef]

Majer, J.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[CrossRef]

McCall, S. L.

S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
[CrossRef]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1995).

Moiseev, S. A.

S. A. Moiseev, “Off-resonant raman-echo quantum memory for inhomogeneously broadened atoms in a cavity,” Phys. Rev. A 88, 012304 (2013).
[CrossRef]

S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optimal QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

S. A. Moiseev, “Quantum memory for intense light fields in photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260 (2004).

Mølmer, K.

B. Julsgaard, C. Grezes, P. Bertet, and K. Mølmer, “Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble,” Phys. Rev. Lett. 110, 250503 (2013).
[CrossRef] [PubMed]

B. Julsgaard and K. Mølmer, “Reflectivity and transmissivity of a cavity coupled to two-level systems: Coherence properties and the influence of phase decay,” Phys. Rev. A 85, 013844 (2012).
[CrossRef]

Morishita, N.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Morton, J. J. L.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Mossberg, T. W.

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A 67, 063811 (2003).
[CrossRef]

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, “Instability and pulse area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

Nabors, C.

W. J. Kozlovsky, C. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd: YAG laser using monolithic MgO: LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Nakamura, S.

Nöbauer, T.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Ohshima, T.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Ong, F. R.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Onoda, S.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 3 (John Wiley, 2005).

Protopopov, I.

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Putz, S.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Raimond, J.

S. Haroche and J. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford Graduate Texts (OUP Oxford, 2006).
[CrossRef]

Reynhardt, E.

J. Van Wyk, E. Reynhardt, G. High, and I. Kiflawi, “The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond,” J. Phys. D Appl. Phys. 30, 1790 (1997).
[CrossRef]

Rippe, L.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[CrossRef]

M. Sabooni, Q. Li, L. Rippe, and S. Kröll, “Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity,” arXiv preprint arXiv:1304.4456 (2013).

Ritsch, H.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Roch, J.-F.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Rotter, S.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Rotzinger, H.

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Ruggiero, J.

J. Ruggiero, T. Chanelière, and J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010).
[CrossRef]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

Sabooni, M.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[CrossRef]

M. Sabooni, Q. Li, L. Rippe, and S. Kröll, “Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity,” arXiv preprint arXiv:1304.4456 (2013).

Sandner, K.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Sangouard, N.

M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013).
[CrossRef]

Schmiedmayer, J.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Schneider, S.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Schoelkopf, R. J.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Schramböck, M.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Schuster, D. I.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Sears, A. P.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Simon, C.

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
[CrossRef]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

Slichter, C. P.

C. P. Slichter, Principles of Magnetic Resonance (Springer, 1990), Vol. 1.
[CrossRef]

Sørensen, A. S.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in λ-type optically dense atomic media. I. cavity model,” Phys. Rev. A 76, 033804 (2007).
[CrossRef]

Spano, F. C.

F. C. Spano and W. S. Warren, “Preparation of constant-bandwidth total inversion, independent of optical density, with phase-modulated laser pulses,” Phys. Rev. A 37, 1013–1016 (1988).
[CrossRef] [PubMed]

Staudt, M. U.

M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013).
[CrossRef]

Steinhauser, G.

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

Stenholm, S.

S. Stenholm and W. E. Lamb, “Semiclassical theory of a high-intensity laser,” Phys. Rev. 181, 618–635 (1969).
[CrossRef]

Sumiya, H.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Tan, X.-D.

W. Gao, X.-D. Tan, M.-F. Wang, and Y.-Z. Zheng, “Quantum memory with natural inhomogeneous broadening in an optical cavity,” Int. J. Theor. Phys. 52, 2092–2098 (2013).
[CrossRef]

Thuresson, A.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[CrossRef]

Tournois, P.

F. Gires and P. Tournois, “Interfèromètre utilisable pour la compression d’impulsions lumineuses modulées en fréquence,” C. R. Acad. Sci. Paris 258, 6112–6115 (1964).

Umeda, T.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Ustinov, A. V.

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Van Wyk, J.

J. Van Wyk, E. Reynhardt, G. High, and I. Kiflawi, “The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond,” J. Phys. D Appl. Phys. 30, 1790 (1997).
[CrossRef]

Viola, L.

L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58, 2733–2744 (1998).
[CrossRef]

Vion, D.

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1995).

Wang, M.-F.

W. Gao, X.-D. Tan, M.-F. Wang, and Y.-Z. Zheng, “Quantum memory with natural inhomogeneous broadening in an optical cavity,” Int. J. Theor. Phys. 52, 2092–2098 (2013).
[CrossRef]

Wang, T.

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, “Instability and pulse area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

Warren, W. S.

F. C. Spano and W. S. Warren, “Preparation of constant-bandwidth total inversion, independent of optical density, with phase-modulated laser pulses,” Phys. Rev. A 37, 1013–1016 (1988).
[CrossRef] [PubMed]

Wilson, C. M.

M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013).
[CrossRef]

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[CrossRef]

Wrachtrup, J.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Wu, H.

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Zakharov, S.

S. Zakharov, “Interaction of ultrashort light pulses with thin-film resonant structures,” Zh. Eksp. Teor. Fiz 108, 829–841 (1995).

Zakharov, S. M.

V. A. Goryachev and S. M. Zakharov, “Dynamics of transmission of ultrashort light pulses by thin-film cavity structures,” Quantum Electron. 27, 245–248 (1997).
[CrossRef]

Zheng, D.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

Zheng, Y.-Z.

W. Gao, X.-D. Tan, M.-F. Wang, and Y.-Z. Zheng, “Quantum memory with natural inhomogeneous broadening in an optical cavity,” Int. J. Theor. Phys. 52, 2092–2098 (2013).
[CrossRef]

C. R. Acad. Sci. Paris (1)

F. Gires and P. Tournois, “Interfèromètre utilisable pour la compression d’impulsions lumineuses modulées en fréquence,” C. R. Acad. Sci. Paris 258, 6112–6115 (1964).

IEEE J. Quantum Electron. (2)

P. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. 17, 301–306 (1981).
[CrossRef]

W. J. Kozlovsky, C. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd: YAG laser using monolithic MgO: LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Int. J. Theor. Phys. (1)

W. Gao, X.-D. Tan, M.-F. Wang, and Y.-Z. Zheng, “Quantum memory with natural inhomogeneous broadening in an optical cavity,” Int. J. Theor. Phys. 52, 2092–2098 (2013).
[CrossRef]

Izv. Ross. Akad. Nauk, Ser. Fiz. (1)

S. A. Moiseev, “Quantum memory for intense light fields in photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260 (2004).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

J. Van Wyk, E. Reynhardt, G. High, and I. Kiflawi, “The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond,” J. Phys. D Appl. Phys. 30, 1790 (1997).
[CrossRef]

New J. Phys. (3)

M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013).
[CrossRef]

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[CrossRef]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011).
[CrossRef]

Opt. Express (2)

Phys. Rev. (1)

S. Stenholm and W. E. Lamb, “Semiclassical theory of a high-intensity laser,” Phys. Rev. 181, 618–635 (1969).
[CrossRef]

Phys. Rev. A (12)

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A 67, 063811 (2003).
[CrossRef]

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
[CrossRef]

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[CrossRef] [PubMed]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in λ-type optically dense atomic media. I. cavity model,” Phys. Rev. A 76, 033804 (2007).
[CrossRef]

B. Julsgaard and K. Mølmer, “Reflectivity and transmissivity of a cavity coupled to two-level systems: Coherence properties and the influence of phase decay,” Phys. Rev. A 85, 013844 (2012).
[CrossRef]

L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58, 2733–2744 (1998).
[CrossRef]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
[CrossRef]

S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optimal QED cavity,” Phys. Rev. A 82, 022311 (2010).
[CrossRef]

J. Ruggiero, J.-L. Le Gouët, C. Simon, and T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009).
[CrossRef]

S. A. Moiseev, “Off-resonant raman-echo quantum memory for inhomogeneously broadened atoms in a cavity,” Phys. Rev. A 88, 012304 (2013).
[CrossRef]

F. C. Spano and W. S. Warren, “Preparation of constant-bandwidth total inversion, independent of optical density, with phase-modulated laser pulses,” Phys. Rev. A 37, 1013–1016 (1988).
[CrossRef] [PubMed]

K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A 74, 033818 (2006).
[CrossRef]

Phys. Rev. B (1)

P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, and A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011).
[CrossRef]

Phys. Rev. Lett. (7)

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011).
[CrossRef] [PubMed]

D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010).
[CrossRef]

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010).
[CrossRef]

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011).
[CrossRef] [PubMed]

B. Julsgaard, C. Grezes, P. Bertet, and K. Mølmer, “Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble,” Phys. Rev. Lett. 110, 250503 (2013).
[CrossRef] [PubMed]

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, “Instability and pulse area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967).
[CrossRef]

Quantum Electron. (1)

V. A. Goryachev and S. M. Zakharov, “Dynamics of transmission of ultrashort light pulses by thin-film cavity structures,” Quantum Electron. 27, 245–248 (1997).
[CrossRef]

Zh. Eksp. Teor. Fiz (1)

S. Zakharov, “Interaction of ultrashort light pulses with thin-film resonant structures,” Zh. Eksp. Teor. Fiz 108, 829–841 (1995).

Other (7)

D. M. Pozar, Microwave Engineering, 3 (John Wiley, 2005).

C. P. Slichter, Principles of Magnetic Resonance (Springer, 1990), Vol. 1.
[CrossRef]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1995).

S. Haroche and J. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford Graduate Texts (OUP Oxford, 2006).
[CrossRef]

L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms (Courier Dover, 1987).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[CrossRef]

M. Sabooni, Q. Li, L. Rippe, and S. Kröll, “Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity,” arXiv preprint arXiv:1304.4456 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Active ring cavity uniformly filled with emitters. The entrance mirror is partially reflecting. The different fields are defined by their time-varying Rabi frequencies: Ωin, Ωout represent the incoming and the outgoing amplitudes on the entrance mirror and Ω the intracavity mode amplitude. The spatial dependence can be neglected when the round-trip absorption is small. The local interference because of a partial beam overlap is supposed to be negligibly within the cavity volume.

Fig. 2
Fig. 2

Outgoing Θout (top) and intracavity area Θ (bottom) as a function of the incoming area Θin calculated from the matched cavity area theorem (Eq. (10)). Squares correspond to the numerical simulation of the pulse temporal shapes that will be detailed later on (see 4.3). It serves as a validation of the numerically calculated area that can be compared to the analytic result of the area theorem.

Fig. 3
Fig. 3

Top: incoming gaussian pulses Ωin of varying area Θ in = 0.4 κ 2 π in black, Θ in = κ 2 π in red (π -pulse) and Θ in = κ π in blue (2π-pulse). The corresponding intracavity Ω (middle) and outgoing pulses Ωout (bottom).

Fig. 4
Fig. 4

Left: normalized outgoing pulse Ωout for Θ in = 0.4 κ 2 π, κ 2 π and κ π in black, red and blue respectively (as in Fig. 3). The normalised incoming pulse is plotted as a reference (dashed red). The long tail of the outgoing π-pulse (red) is prominent. Right: root mean square (rms) temporal widths of the calculated pulse (squares, a dashed line is used to guide the eye).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

t U Δ = Δ V Δ t V Δ = Δ U Δ + Ω W Δ t W Δ = Ω V Δ
t R Δ = i Δ R Δ + i Ω W Δ
1 𝒟 Ω t = κ 2 Ω + κ Ω in i α L Δ g ( Δ ) R Δ d Δ Ω out = κ Ω Ω in
r ( ω ) = κ 2 π α L 2 i ω / 𝒟 κ + 2 π α L + 2 i ω / 𝒟
α L = κ 2 π
κ 2 Θ κ Θ in = i α L t Δ g ( Δ ) R Δ ( t ) d Δ d t Θ out = κ Θ Θ in
R Δ ( t ) = i exp ( i Δ t ) t W Δ ( t ) Ω ( t ) exp ( i Δ t ) d t
W 0 ( t ) = cos ( t Ω d t )
κ 2 Θ κ Θ in = π α L sin ( Θ ) Θ out = κ Θ Θ in
Θ 2 κ Θ in = sin ( Θ ) Θ out = κ Θ Θ in
1 𝒟 Ω t = κ 2 Ω + κ Ω in i α L n ( U Δ n + i V Δ n ) d Δ
r W ( ω ) = κ + 4 π W α L 4 i π ω / 𝒟 κ 4 π W α L + 4 i π ω / 𝒟
r W ( 0 ) = 1 + W 1 W and T g = 1 Δ ω cav 4 ( 1 W ) 2

Metrics