Abstract

We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a short cavity. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs (s. mW. MHz)−1 is reported. The cavity parameters are chosen such that the photon pair modes emitted can be matched to telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007).
    [CrossRef]
  2. S. Fasel, N. Gisin, G. Ribordy, H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Euro. Phys. J. D 30, 143–148 (2004).
    [CrossRef]
  3. M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys Rev Lett 71, 4287 (1993).
    [CrossRef] [PubMed]
  4. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
    [CrossRef]
  5. P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
    [CrossRef]
  6. S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
    [CrossRef]
  7. W. Grice, A. U’Ren, I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys Rev A 64, 063815 (2001).
    [CrossRef]
  8. C. I. Osorio, N. Sangouard, R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys 46, 055501 (2013).
    [CrossRef]
  9. Y. P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
    [CrossRef]
  10. M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: single-photon sources and detectors.” Rev Sci Instrum 82, 071101 (2011).
    [CrossRef] [PubMed]
  11. M. Scholz, L. Koch, R. Ullmann, O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl Phys Lett 94, 201105 (2009).
    [CrossRef]
  12. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
    [CrossRef]
  13. Y. J. Moreno, S. R. Benavides, A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downcon-version,” P Soc Photo-opt Ins 20, 1221–1233 (2010).
  14. D. Höckel, L. Koch, O. Benson, “Direct measurement of heralded single-photon statistics from a parametric down-conversion source,” Phys. Rev. A 83, 013802 (2011).
    [CrossRef]
  15. E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
    [CrossRef]
  16. C.-S. Chuu, G. Y. Yin, S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl Phys Lett 101, 051108 (2012).
    [CrossRef]
  17. J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys Rev Lett 110, 220502 (2013).
    [CrossRef] [PubMed]
  18. K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).
  19. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
    [CrossRef]
  20. Y. Lu, Z. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
    [CrossRef]
  21. P. Hariharan, B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J Mod Optic 47, 1739–1744 (2000).
    [CrossRef]
  22. M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
    [CrossRef] [PubMed]
  23. N. Bruno, A. Martin, R. T. Thew, “Generation of tunable wavelength coherent states and heralded single photons for quantum optics applications,” arXiv: p. 1309.6172 (2013).
  24. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

2013

C. I. Osorio, N. Sangouard, R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys 46, 055501 (2013).
[CrossRef]

J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys Rev Lett 110, 220502 (2013).
[CrossRef] [PubMed]

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

2012

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[CrossRef]

C.-S. Chuu, G. Y. Yin, S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl Phys Lett 101, 051108 (2012).
[CrossRef]

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
[CrossRef]

2011

M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: single-photon sources and detectors.” Rev Sci Instrum 82, 071101 (2011).
[CrossRef] [PubMed]

D. Höckel, L. Koch, O. Benson, “Direct measurement of heralded single-photon statistics from a parametric down-conversion source,” Phys. Rev. A 83, 013802 (2011).
[CrossRef]

2010

Y. J. Moreno, S. R. Benavides, A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downcon-version,” P Soc Photo-opt Ins 20, 1221–1233 (2010).

Y. P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[CrossRef]

2009

M. Scholz, L. Koch, R. Ullmann, O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl Phys Lett 94, 201105 (2009).
[CrossRef]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

2007

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

N. Gisin, R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007).
[CrossRef]

2004

S. Fasel, N. Gisin, G. Ribordy, H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Euro. Phys. J. D 30, 143–148 (2004).
[CrossRef]

2001

W. Grice, A. U’Ren, I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys Rev A 64, 063815 (2001).
[CrossRef]

2000

Y. Lu, Z. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

P. Hariharan, B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J Mod Optic 47, 1739–1744 (2000).
[CrossRef]

1993

M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys Rev Lett 71, 4287 (1993).
[CrossRef] [PubMed]

1991

Aboussouan, P.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[CrossRef]

Aiello, A.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Alibart, O.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
[CrossRef]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[CrossRef]

Altepeter, J. B.

Y. P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

Aus, M.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Baldi, P.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[CrossRef]

Benavides, S. R.

Y. J. Moreno, S. R. Benavides, A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downcon-version,” P Soc Photo-opt Ins 20, 1221–1233 (2010).

Benson, O.

D. Höckel, L. Koch, O. Benson, “Direct measurement of heralded single-photon statistics from a parametric down-conversion source,” Phys. Rev. A 83, 013802 (2011).
[CrossRef]

M. Scholz, L. Koch, R. Ullmann, O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl Phys Lett 94, 201105 (2009).
[CrossRef]

Beveratos, A.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Bruno, N.

N. Bruno, A. Martin, R. T. Thew, “Generation of tunable wavelength coherent states and heralded single photons for quantum optics applications,” arXiv: p. 1309.6172 (2013).

Byer, R. L.

Chekhova, M. V.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Chuu, C.-S.

C.-S. Chuu, G. Y. Yin, S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl Phys Lett 101, 051108 (2012).
[CrossRef]

Cristiani, M.

J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys Rev Lett 110, 220502 (2013).
[CrossRef] [PubMed]

De Micheli, M.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
[CrossRef]

de Riedmatten, H.

J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys Rev Lett 110, 220502 (2013).
[CrossRef] [PubMed]

Eckardt, R. C.

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: single-photon sources and detectors.” Rev Sci Instrum 82, 071101 (2011).
[CrossRef] [PubMed]

Ekert, A. K.

M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys Rev Lett 71, 4287 (1993).
[CrossRef] [PubMed]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: single-photon sources and detectors.” Rev Sci Instrum 82, 071101 (2011).
[CrossRef] [PubMed]

Fasel, S.

S. Fasel, N. Gisin, G. Ribordy, H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Euro. Phys. J. D 30, 143–148 (2004).
[CrossRef]

Fekete, J.

J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys Rev Lett 110, 220502 (2013).
[CrossRef] [PubMed]

Förtsch, M.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Fürst, J. U.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Gisin, N.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

N. Gisin, R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007).
[CrossRef]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

S. Fasel, N. Gisin, G. Ribordy, H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Euro. Phys. J. D 30, 143–148 (2004).
[CrossRef]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

Grice, W.

W. Grice, A. U’Ren, I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys Rev A 64, 063815 (2001).
[CrossRef]

Halder, M.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Hariharan, P.

P. Hariharan, B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J Mod Optic 47, 1739–1744 (2000).
[CrossRef]

Harris, S. E.

C.-S. Chuu, G. Y. Yin, S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl Phys Lett 101, 051108 (2012).
[CrossRef]

Herrmann, H.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[CrossRef]

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

Höckel, D.

D. Höckel, L. Koch, O. Benson, “Direct measurement of heralded single-photon statistics from a parametric down-conversion source,” Phys. Rev. A 83, 013802 (2011).
[CrossRef]

Horne, M. A.

M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys Rev Lett 71, 4287 (1993).
[CrossRef] [PubMed]

Huang, Y. P.

Y. P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

Kaiser, F.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
[CrossRef]

Koch, L.

D. Höckel, L. Koch, O. Benson, “Direct measurement of heralded single-photon statistics from a parametric down-conversion source,” Phys. Rev. A 83, 013802 (2011).
[CrossRef]

M. Scholz, L. Koch, R. Ullmann, O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl Phys Lett 94, 201105 (2009).
[CrossRef]

Korzh, B.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

Kozlovsky, W. J.

Krapick, S.

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

Kumar, P.

Y. P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

Leuchs, G.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, Z. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

Lunghi, T.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

Luo, K.

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

Marquardt, C.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Martin, A.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
[CrossRef]

N. Bruno, A. Martin, R. T. Thew, “Generation of tunable wavelength coherent states and heralded single photons for quantum optics applications,” arXiv: p. 1309.6172 (2013).

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: single-photon sources and detectors.” Rev Sci Instrum 82, 071101 (2011).
[CrossRef] [PubMed]

Moreno, Y. J.

Y. J. Moreno, S. R. Benavides, A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downcon-version,” P Soc Photo-opt Ins 20, 1221–1233 (2010).

Nabors, C. D.

Osorio, C. I.

C. I. Osorio, N. Sangouard, R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys 46, 055501 (2013).
[CrossRef]

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[CrossRef]

Ostrowsky, D.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
[CrossRef]

Ostrowsky, D. B.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[CrossRef]

Ou, Z.

Y. Lu, Z. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: single-photon sources and detectors.” Rev Sci Instrum 82, 071101 (2011).
[CrossRef] [PubMed]

Pomarico, E.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[CrossRef]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Quiring, V.

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

Ribordy, G.

S. Fasel, N. Gisin, G. Ribordy, H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Euro. Phys. J. D 30, 143–148 (2004).
[CrossRef]

Ricken, R.

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

Rieländer, D.

J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys Rev Lett 110, 220502 (2013).
[CrossRef] [PubMed]

Sanders, B. C.

P. Hariharan, B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J Mod Optic 47, 1739–1744 (2000).
[CrossRef]

Sangouard, N.

C. I. Osorio, N. Sangouard, R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys 46, 055501 (2013).
[CrossRef]

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[CrossRef]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Scarani, V.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Scholz, M.

M. Scholz, L. Koch, R. Ullmann, O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl Phys Lett 94, 201105 (2009).
[CrossRef]

Schreiber, G.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Silberhorn, C.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

Simon, C.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

Sohler, W.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

Strekalov, D.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Suche, H.

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

Tanzilli, S.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
[CrossRef]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[CrossRef]

Thew, R.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

N. Gisin, R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007).
[CrossRef]

Thew, R. T.

C. I. Osorio, N. Sangouard, R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys 46, 055501 (2013).
[CrossRef]

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[CrossRef]

N. Bruno, A. Martin, R. T. Thew, “Generation of tunable wavelength coherent states and heralded single photons for quantum optics applications,” arXiv: p. 1309.6172 (2013).

Thomas, A.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

U’Ren, A.

W. Grice, A. U’Ren, I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys Rev A 64, 063815 (2001).
[CrossRef]

U’Ren, A. B.

Y. J. Moreno, S. R. Benavides, A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downcon-version,” P Soc Photo-opt Ins 20, 1221–1233 (2010).

Ullmann, R.

M. Scholz, L. Koch, R. Ullmann, O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl Phys Lett 94, 201105 (2009).
[CrossRef]

Walenta, N.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

Walmsley, I.

W. Grice, A. U’Ren, I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys Rev A 64, 063815 (2001).
[CrossRef]

We, C.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

Wittmann, C.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Yin, G. Y.

C.-S. Chuu, G. Y. Yin, S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl Phys Lett 101, 051108 (2012).
[CrossRef]

Zbinden, H.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

S. Fasel, N. Gisin, G. Ribordy, H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Euro. Phys. J. D 30, 143–148 (2004).
[CrossRef]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

Zeilinger, A.

M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys Rev Lett 71, 4287 (1993).
[CrossRef] [PubMed]

Zukowski, M.

M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys Rev Lett 71, 4287 (1993).
[CrossRef] [PubMed]

Appl Phys Lett

M. Scholz, L. Koch, R. Ullmann, O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl Phys Lett 94, 201105 (2009).
[CrossRef]

C.-S. Chuu, G. Y. Yin, S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl Phys Lett 101, 051108 (2012).
[CrossRef]

Euro. Phys. J. D

S. Fasel, N. Gisin, G. Ribordy, H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Euro. Phys. J. D 30, 143–148 (2004).
[CrossRef]

J Mod Optic

P. Hariharan, B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J Mod Optic 47, 1739–1744 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B: At. Mol. Opt. Phys

C. I. Osorio, N. Sangouard, R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys 46, 055501 (2013).
[CrossRef]

Laser & Photonics Reviews

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012).
[CrossRef]

Nat. Commun.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Nat. Photon.

N. Gisin, R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007).
[CrossRef]

Nat. Phys.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007).
[CrossRef]

New J. Phys.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[CrossRef]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

P Soc Photo-opt Ins

Y. J. Moreno, S. R. Benavides, A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downcon-version,” P Soc Photo-opt Ins 20, 1221–1233 (2010).

Phys Rev A

W. Grice, A. U’Ren, I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys Rev A 64, 063815 (2001).
[CrossRef]

Phys Rev Lett

M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys Rev Lett 71, 4287 (1993).
[CrossRef] [PubMed]

J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys Rev Lett 110, 220502 (2013).
[CrossRef] [PubMed]

Phys. Rev. A

D. Höckel, L. Koch, O. Benson, “Direct measurement of heralded single-photon statistics from a parametric down-conversion source,” Phys. Rev. A 83, 013802 (2011).
[CrossRef]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[CrossRef]

Y. P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010).
[CrossRef]

Y. Lu, Z. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

Rev Sci Instrum

M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: single-photon sources and detectors.” Rev Sci Instrum 82, 071101 (2011).
[CrossRef] [PubMed]

Other

K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).

N. Bruno, A. Martin, R. T. Thew, “Generation of tunable wavelength coherent states and heralded single photons for quantum optics applications,” arXiv: p. 1309.6172 (2013).

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) OPO Photon pair source geometry. (b) The short (∼ 3.9 mm) cavity length is chosen so that the FSR matches the DWDM spacing to allow for low-loss mode selection.

Fig. 2
Fig. 2

OPO photon pair source cavity mount. The upper inset is a zoom on the crystal and holder. The design is made in such a way that the mean height of the crystal coincides with the center of the concave mirror to within 100 μm.

Fig. 3
Fig. 3

Schematic of set-up for source characterisation. A power meter (PM) measures the transmitted pump power to characterise the cavity. A dichroic mirror (D) separates the emitted photon pairs from any pump light. The pairs are coupled into single mode telecom fibres before deterministically separating the photons (channel selection). Three detectors are used to check the source characteristics and statistics with the aid of a Time-to-Digital Converter (TDC).

Fig. 4
Fig. 4

Measured cavity FSR. We obtain a FSR of 0.24 nm (29.7 GHz), which is in agreement with the expected value. The lack of other cavity modes shows a good alignment between the cavity and the single mode telecom fiber.

Fig. 5
Fig. 5

(a): The measured spectrum with the cavity at 43.77°C is dominated by two clusters centered around 2λP. At this temperature, the width of the cluster envelope is around 2.5 nm. The decrease in height with the increasing wavelength is due to a decrease in the sensitivity of the InGaAs sensor with respect to the wavelength. The small peaks to the sides are due to other clusters of modes which can arise due to the extremely large phasematching bandwidth in such a short crystal. (b): Envelope position of the clusters with respect to the temperature of the crystal and cavity. The data, containing 13 horizontal stripes, has been smoothed.

Fig. 6
Fig. 6

(a): Coincidence measurement for the two correlated cavity modes. The central inset shows this measurement in a linear scale. The noise to signal ratio is less than 1%. (b): The g(2) measurement of our source. Here photons from the same mode are split on a beamsplitter and sent to two detectors. Coincidences from these detectors are taken without heralding (detections on the other mode are ignored). We show the error bars at every four points in order to clarify the plot. The measured effective number of modes [22] is 1.19 ± 0.15.

Metrics