Abstract

Recently, there are great interest in studying the interaction between chiral molecules and plasmonic particles, because a weak circular dichroism (CD) signal in the ultraviolet (UV) region from chiral molecules can be both enhanced and transferred to the visible wavelength range by using plasmonic particles. Thus, ultrasensitive probe of tiny amounts of chiral substance by CD are worth waiting for. Here we present another way to strongly enhance CD of chiral molecules by using plasmonic particle cluster, which need not transfer to the visible wavelength. The method to calculate CD of chiral molecules in nanosphere clusters has been developed by means of multiple scattering of electromagnetic multipole fields. Our calculated results show that 2 orders of magnitude CD enhancement in the UV region for chiral molecules can be realized. Such a CD enhancement is very sensitive to the cluster structure. The cluster structure can cause chiroptical illusion in which a mirror symmetry in the CD spectra of opposite enantiomeric molecules is broken. The correction of quantum size effect on the phenomenon has also been considered. Our findings open up an alternative avenue for the ultrasensitive detection and illusion of chiral information.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Fasman, Circular dichroism and the conformational analysis of biomolecules (Plenum, 1996).
  2. G. H. Wagniere, On chirality and the universal asymmetry: reflections on image and mirror image (VHCA with Wiley-VCH, 2007).
  3. N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy (John Wiley and Sons Inc.: New York, 2012).
  4. D. Patterson, M. Schnell, J. M. Doyle, “Enantiomer-specific detection of chiral molecules via microwave spectroscopy,” Nature 497(7450), 475–477 (2013).
    [CrossRef] [PubMed]
  5. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998).
    [CrossRef] [PubMed]
  6. W. C. W. Chan, S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science 281(5385), 2016–2018 (1998).
    [CrossRef] [PubMed]
  7. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  8. W. J. Crookes-Goodson, J. M. Slocik, R. R. Naik, “Bio-directed synthesis and assembly of nanomaterials,” Chem. Soc. Rev. 37(11), 2403–2412 (2008).
    [CrossRef] [PubMed]
  9. Y. Tang, M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6(10), 754–759 (2007).
    [CrossRef] [PubMed]
  10. F. J. García de Abajo, “Rev. Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [CrossRef]
  11. S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [CrossRef] [PubMed]
  12. K. A. Willets, V. Duyne, R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” J. Phys. Chem. 58(1), 267–297 (2007).
  13. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [CrossRef] [PubMed]
  14. S. Nie, S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  15. H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [CrossRef]
  16. L. Chuntonov, G. Haran, “Maximal Raman Optical Activity in Hybrid Single Molecule-Plasmonic Nanostructures with Multiple Dipolar Resonances,” Nano Lett. 13(3), 1285–1290 (2013).
    [CrossRef] [PubMed]
  17. V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  18. C. Rockstuhl, F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
    [CrossRef]
  19. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [CrossRef] [PubMed]
  20. I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
    [CrossRef] [PubMed]
  21. J. George, K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc. 132(8), 2502–2503 (2010).
    [CrossRef] [PubMed]
  22. Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
    [CrossRef] [PubMed]
  23. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
    [CrossRef] [PubMed]
  24. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010).
    [CrossRef] [PubMed]
  25. Z. Fan, A. O. Govorov, “Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
    [CrossRef] [PubMed]
  26. J. M. Slocik, A. O. Govorov, R. R. Naik, “Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles,” Nano Lett. 11(2), 701–705 (2011).
    [CrossRef] [PubMed]
  27. B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
    [CrossRef] [PubMed]
  28. R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
    [CrossRef]
  29. N. Cathcart, V. Kitaev, “Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly,” ACS Nano 5(9), 7411–7425 (2011).
    [CrossRef] [PubMed]
  30. V. V. Klimov, D. V. Guzatov, M. Ducloy, “Engineering of radiation of optically active molecules with chiral nano-meta-particles,” Europhys. Lett. 97(4), 47004–47009 (2012).
    [CrossRef]
  31. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
    [CrossRef] [PubMed]
  32. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [CrossRef] [PubMed]
  33. Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
    [CrossRef] [PubMed]
  34. W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
    [CrossRef] [PubMed]
  35. B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
    [CrossRef] [PubMed]
  36. F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
    [CrossRef] [PubMed]
  37. H. Zhang, A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87(7), 075410 (2013).
    [CrossRef]
  38. J. Xu, X. D. Zhang, “Second harmonic generation in three-dimensional structures based on homogeneous centrosymmetric metallic spheres,” Opt. Express 20(2), 1668–1684 (2012).
    [CrossRef] [PubMed]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  40. J. Zuloaga, E. Prodan, P. Nordlander, “Quantum Description of the plasmon resonances of a nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
    [PubMed]
  41. R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun 3, 825 (2012).
    [CrossRef] [PubMed]
  42. J. A. Scholl, A. L. Koh, J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
    [CrossRef] [PubMed]
  43. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
    [CrossRef] [PubMed]
  44. R. A. de la Osa, J. M. Sanz, J. M. Saiz, F. González, F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012).
    [CrossRef] [PubMed]
  45. W. A. Kraus, G. C. Schatz, “Plasmon resonance broadending in small metal particles,” J. Chem. Phys. 79(12), 6130–6139 (1983).
    [CrossRef]

2013 (5)

D. Patterson, M. Schnell, J. M. Doyle, “Enantiomer-specific detection of chiral molecules via microwave spectroscopy,” Nature 497(7450), 475–477 (2013).
[CrossRef] [PubMed]

L. Chuntonov, G. Haran, “Maximal Raman Optical Activity in Hybrid Single Molecule-Plasmonic Nanostructures with Multiple Dipolar Resonances,” Nano Lett. 13(3), 1285–1290 (2013).
[CrossRef] [PubMed]

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

H. Zhang, A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87(7), 075410 (2013).
[CrossRef]

2012 (12)

J. Xu, X. D. Zhang, “Second harmonic generation in three-dimensional structures based on homogeneous centrosymmetric metallic spheres,” Opt. Express 20(2), 1668–1684 (2012).
[CrossRef] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun 3, 825 (2012).
[CrossRef] [PubMed]

J. A. Scholl, A. L. Koh, J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[CrossRef] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[CrossRef] [PubMed]

R. A. de la Osa, J. M. Sanz, J. M. Saiz, F. González, F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012).
[CrossRef] [PubMed]

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

V. V. Klimov, D. V. Guzatov, M. Ducloy, “Engineering of radiation of optically active molecules with chiral nano-meta-particles,” Europhys. Lett. 97(4), 47004–47009 (2012).
[CrossRef]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

2011 (4)

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

N. Cathcart, V. Kitaev, “Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly,” ACS Nano 5(9), 7411–7425 (2011).
[CrossRef] [PubMed]

J. M. Slocik, A. O. Govorov, R. R. Naik, “Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles,” Nano Lett. 11(2), 701–705 (2011).
[CrossRef] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

2010 (4)

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010).
[CrossRef] [PubMed]

Z. Fan, A. O. Govorov, “Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[CrossRef] [PubMed]

J. George, K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc. 132(8), 2502–2503 (2010).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

2009 (2)

C. Rockstuhl, F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum Description of the plasmon resonances of a nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[PubMed]

2008 (3)

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

W. J. Crookes-Goodson, J. M. Slocik, R. R. Naik, “Bio-directed synthesis and assembly of nanomaterials,” Chem. Soc. Rev. 37(11), 2403–2412 (2008).
[CrossRef] [PubMed]

2007 (4)

Y. Tang, M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6(10), 754–759 (2007).
[CrossRef] [PubMed]

F. J. García de Abajo, “Rev. Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

K. A. Willets, V. Duyne, R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” J. Phys. Chem. 58(1), 267–297 (2007).

2005 (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

1999 (1)

H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

1998 (2)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

W. C. W. Chan, S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science 281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

1997 (1)

S. Nie, S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1983 (1)

W. A. Kraus, G. C. Schatz, “Plasmon resonance broadending in small metal particles,” J. Chem. Phys. 79(12), 6130–6139 (1983).
[CrossRef]

Aizpurua, J.

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun 3, 825 (2012).
[CrossRef] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[CrossRef] [PubMed]

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Annu, R. P.

K. A. Willets, V. Duyne, R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” J. Phys. Chem. 58(1), 267–297 (2007).

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Bao, K.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

Bar Elli, O.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[CrossRef] [PubMed]

Berova, N.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[CrossRef] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun 3, 825 (2012).
[CrossRef] [PubMed]

Borjesson, L.

H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Cathcart, N.

N. Cathcart, V. Kitaev, “Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly,” ACS Nano 5(9), 7411–7425 (2011).
[CrossRef] [PubMed]

Chaikin, Y.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

Chan, W. C. W.

W. C. W. Chan, S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science 281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Chung, T.-S.

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

Chuntonov, L.

L. Chuntonov, G. Haran, “Maximal Raman Optical Activity in Hybrid Single Molecule-Plasmonic Nanostructures with Multiple Dipolar Resonances,” Nano Lett. 13(3), 1285–1290 (2013).
[CrossRef] [PubMed]

Crookes-Goodson, W. J.

W. J. Crookes-Goodson, J. M. Slocik, R. R. Naik, “Bio-directed synthesis and assembly of nanomaterials,” Chem. Soc. Rev. 37(11), 2403–2412 (2008).
[CrossRef] [PubMed]

de la Osa, R. A.

Dionne, J. A.

J. A. Scholl, A. L. Koh, J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[CrossRef] [PubMed]

Doyle, J. M.

D. Patterson, M. Schnell, J. M. Doyle, “Enantiomer-specific detection of chiral molecules via microwave spectroscopy,” Nature 497(7450), 475–477 (2013).
[CrossRef] [PubMed]

Ducloy, M.

V. V. Klimov, D. V. Guzatov, M. Ducloy, “Engineering of radiation of optically active molecules with chiral nano-meta-particles,” Europhys. Lett. 97(4), 47004–47009 (2012).
[CrossRef]

Duyne, V.

K. A. Willets, V. Duyne, R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” J. Phys. Chem. 58(1), 267–297 (2007).

Ellestad, G.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie, S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Esteban, R.

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun 3, 825 (2012).
[CrossRef] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[CrossRef] [PubMed]

Fan, Z.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010).
[CrossRef] [PubMed]

Z. Fan, A. O. Govorov, “Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[CrossRef] [PubMed]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Fried, T.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[CrossRef] [PubMed]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Gang, O.

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

Gao, Y.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, “Rev. Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

George, J.

J. George, K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc. 132(8), 2502–2503 (2010).
[CrossRef] [PubMed]

Ghosh, S. K.

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Giessen, H.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

González, F.

Govorov, A. O.

H. Zhang, A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87(7), 075410 (2013).
[CrossRef]

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

J. M. Slocik, A. O. Govorov, R. R. Naik, “Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles,” Nano Lett. 11(2), 701–705 (2011).
[CrossRef] [PubMed]

Z. Fan, A. O. Govorov, “Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010).
[CrossRef] [PubMed]

Guzatov, D. V.

V. V. Klimov, D. V. Guzatov, M. Ducloy, “Engineering of radiation of optically active molecules with chiral nano-meta-particles,” Europhys. Lett. 97(4), 47004–47009 (2012).
[CrossRef]

Håkanson, U.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

Halas, N. J.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Han, B.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

Haran, G.

L. Chuntonov, G. Haran, “Maximal Raman Optical Activity in Hybrid Single Molecule-Plasmonic Nanostructures with Multiple Dipolar Resonances,” Nano Lett. 13(3), 1285–1290 (2013).
[CrossRef] [PubMed]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[CrossRef] [PubMed]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Hentschel, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010).
[CrossRef] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Ji, Y.

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Kall, M.

H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Kitaev, V.

N. Cathcart, V. Kitaev, “Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly,” ACS Nano 5(9), 7411–7425 (2011).
[CrossRef] [PubMed]

Klimov, V. V.

V. V. Klimov, D. V. Guzatov, M. Ducloy, “Engineering of radiation of optically active molecules with chiral nano-meta-particles,” Europhys. Lett. 97(4), 47004–47009 (2012).
[CrossRef]

Koh, A. L.

J. A. Scholl, A. L. Koh, J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[CrossRef] [PubMed]

Kosower, E. M.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[CrossRef] [PubMed]

Kotov, N. A.

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

Kraus, W. A.

W. A. Kraus, G. C. Schatz, “Plasmon resonance broadending in small metal particles,” J. Chem. Phys. 79(12), 6130–6139 (1983).
[CrossRef]

Kuang, H.

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Lederer, F.

C. Rockstuhl, F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

Li, Z.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

Lieberman, I.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[CrossRef] [PubMed]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

Liu, M.

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Liu, W.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

Lu, F.

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

Ma, W.

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

Maoz, B. M.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

Markovich, G.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[CrossRef] [PubMed]

Meijer, E. W.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Moreno, F.

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Naik, R. R.

J. M. Slocik, A. O. Govorov, R. R. Naik, “Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles,” Nano Lett. 11(2), 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010).
[CrossRef] [PubMed]

W. J. Crookes-Goodson, J. M. Slocik, R. R. Naik, “Bio-directed synthesis and assembly of nanomaterials,” Chem. Soc. Rev. 37(11), 2403–2412 (2008).
[CrossRef] [PubMed]

Nie, S.

W. C. W. Chan, S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science 281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

S. Nie, S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nordlander, P.

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun 3, 825 (2012).
[CrossRef] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum Description of the plasmon resonances of a nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[PubMed]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ouyang, M.

Y. Tang, M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6(10), 754–759 (2007).
[CrossRef] [PubMed]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Pal, T.

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

Patterson, D.

D. Patterson, M. Schnell, J. M. Doyle, “Enantiomer-specific detection of chiral molecules via microwave spectroscopy,” Nature 497(7450), 475–477 (2013).
[CrossRef] [PubMed]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Prodan, E.

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum Description of the plasmon resonances of a nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[PubMed]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Qu, Y.

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Saiz, J. M.

Sanz, J. M.

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[CrossRef] [PubMed]

Schäferling, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Schatz, G. C.

W. A. Kraus, G. C. Schatz, “Plasmon resonance broadending in small metal particles,” J. Chem. Phys. 79(12), 6130–6139 (1983).
[CrossRef]

Schnell, M.

D. Patterson, M. Schnell, J. M. Doyle, “Enantiomer-specific detection of chiral molecules via microwave spectroscopy,” Nature 497(7450), 475–477 (2013).
[CrossRef] [PubMed]

Scholl, J. A.

J. A. Scholl, A. L. Koh, J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[CrossRef] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

Shemer, G.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[CrossRef] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

Slocik, J. M.

J. M. Slocik, A. O. Govorov, R. R. Naik, “Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles,” Nano Lett. 11(2), 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010).
[CrossRef] [PubMed]

W. J. Crookes-Goodson, J. M. Slocik, R. R. Naik, “Bio-directed synthesis and assembly of nanomaterials,” Chem. Soc. Rev. 37(11), 2403–2412 (2008).
[CrossRef] [PubMed]

Su, D.

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Tang, Y.

Y. Tang, M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6(10), 754–759 (2007).
[CrossRef] [PubMed]

Tang, Z.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

Tesler, A. B.

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

Thomas, K. G.

J. George, K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc. 132(8), 2502–2503 (2010).
[CrossRef] [PubMed]

Tian, Y.

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

van der Weegen, R.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

Wang, H.

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

Wang, L.

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

Wang, P.

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

Wang, R.-Y.

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

Wei, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets, V. Duyne, R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” J. Phys. Chem. 58(1), 267–297 (2007).

Wu, X.

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

Xu, C.

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

Xu, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Xu, J.

Xu, L.

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

Xu, Z.

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

Yan, W.

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87(7), 075410 (2013).
[CrossRef]

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

Zhang, X. D.

Zhou, Y.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

Zhu, Y.

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

Zhu, Z.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum Description of the plasmon resonances of a nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[PubMed]

ACS Nano (1)

N. Cathcart, V. Kitaev, “Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly,” ACS Nano 5(9), 7411–7425 (2011).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. Rockstuhl, F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

Chem. Commun. (Camb.) (1)

Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, “Chirality based sensor for bisphenol A Detection,” Chem. Commun. (Camb.) 48(46), 5760–5762 (2012).
[CrossRef] [PubMed]

Chem. Rev. (1)

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

W. J. Crookes-Goodson, J. M. Slocik, R. R. Naik, “Bio-directed synthesis and assembly of nanomaterials,” Chem. Soc. Rev. 37(11), 2403–2412 (2008).
[CrossRef] [PubMed]

Europhys. Lett. (1)

V. V. Klimov, D. V. Guzatov, M. Ducloy, “Engineering of radiation of optically active molecules with chiral nano-meta-particles,” Europhys. Lett. 97(4), 47004–47009 (2012).
[CrossRef]

J. Am. Chem. Soc. (4)

W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, “Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S Optical Activity,” J. Am. Chem. Soc. 134(36), 15114–15121 (2012).
[CrossRef] [PubMed]

J. George, K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc. 132(8), 2502–2503 (2010).
[CrossRef] [PubMed]

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[CrossRef] [PubMed]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

W. A. Kraus, G. C. Schatz, “Plasmon resonance broadending in small metal particles,” J. Chem. Phys. 79(12), 6130–6139 (1983).
[CrossRef]

J. Phys. Chem. (1)

K. A. Willets, V. Duyne, R. P. Annu, “Localized surface plasmon resonance spectroscopy and sensing,” J. Phys. Chem. 58(1), 267–297 (2007).

Nano Lett. (9)

L. Chuntonov, G. Haran, “Maximal Raman Optical Activity in Hybrid Single Molecule-Plasmonic Nanostructures with Multiple Dipolar Resonances,” Nano Lett. 13(3), 1285–1290 (2013).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, “Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects,” Nano Lett. 10(4), 1374–1382 (2010).
[CrossRef] [PubMed]

Z. Fan, A. O. Govorov, “Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[CrossRef] [PubMed]

J. M. Slocik, A. O. Govorov, R. R. Naik, “Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles,” Nano Lett. 11(2), 701–705 (2011).
[CrossRef] [PubMed]

B. M. Maoz, Y. Chaikin, A. B. Tesler, O. Bar Elli, Z. Fan, A. O. Govorov, G. Markovich, “Amplification of Chiroptical Activity of Chiral Biomolecules by Surface Plasmons,” Nano Lett. 13(3), 1203–1209 (2013).
[CrossRef] [PubMed]

F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, “Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality,” Nano Lett. 13(7), 3145–3151 (2013).
[CrossRef] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum Description of the plasmon resonances of a nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[PubMed]

Nat Commun (1)

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat Commun 3, 825 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

Y. Tang, M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6(10), 754–759 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[CrossRef] [PubMed]

Nature (4)

D. Patterson, M. Schnell, J. M. Doyle, “Enantiomer-specific detection of chiral molecules via microwave spectroscopy,” Nature 497(7450), 475–477 (2013).
[CrossRef] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[CrossRef] [PubMed]

J. A. Scholl, A. L. Koh, J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[CrossRef] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

H. Zhang, A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87(7), 075410 (2013).
[CrossRef]

Phys. Rev. Lett. (3)

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Rev. Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

Science (4)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

W. C. W. Chan, S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science 281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

S. Nie, S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Soft Matter (1)

R.-Y. Wang, H. Wang, X. Wu, Y. Ji, P. Wang, Y. Qu, T.-S. Chung, “Chiral assembly of gold nanorods with collective plasmomic circular dichroism response,” Soft Matter 7(18), 8370–8375 (2011).
[CrossRef]

Other (4)

G. D. Fasman, Circular dichroism and the conformational analysis of biomolecules (Plenum, 1996).

G. H. Wagniere, On chirality and the universal asymmetry: reflections on image and mirror image (VHCA with Wiley-VCH, 2007).

N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy (John Wiley and Sons Inc.: New York, 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of a hybrid single molecule-plasmonic nanostructure. The system is scattered by an incident polarized light. Here θ i , ϕ i and r i are the coordinates of the ith sphere in the spherical coordinate system, and the coordinates of the chiral molecule are marked by θ d , ϕ d and r d .

Fig. 2
Fig. 2

Calculated CD signals as a function of wavelengths for molecule-NP complexes with two spheres (a), two large spheres and one small sphere with d 2 =2nm (b), two large spheres and one small sphere with d 2 =1.5nm (c). Here d 2 represent the distance between the molecule and small sphere, and d 1 =4nm is the distance between two large spheres. The radii of two large Au spheres are taken as 17.5nm, the radius for small Au sphere is taken as 4nm. In inset, θ=π/3 represents the angle between the orientation of molecular dipole and y axis. (d) Calculated extinctions of Au NPs.

Fig. 3
Fig. 3

(a) Calculated CD signals as a function of wavelengths for molecule-NP complexes with two Au large spheres and one Au small sphere at various orientations of a molecular dipole. Here d 2 =2nm . (b) The corresponding CD signals for (a) as a function of orientations of a molecular dipole. The other parameters are identical with those in Fig. 2. The corresponding CD signals as a function of wavelengths and orientations of a molecular dipole for Ag sphere systems are given in (c) and (d), respectively. The sizes of Ag spheres and cluster structure are identical with those of three-sphere Au system.

Fig. 4
Fig. 4

(b) Calculated CD signals as a function of wavelengths for molecule-NP complexes with four spheres as shown in Inset. The radii of two large Au spheres are taken as 17.5nm. The red line and black line represent the results with d 2 =1.5nm and d 2 =2nm , respectively. The other parameters are identical with those in Fig. 2. (a) The corresponding extinctions of 4-sphere system.

Fig. 5
Fig. 5

The spatial profile of the electric field amplitude in yz plane for the three-sphere system (a) and four-sphere system (b) at wavelength λ=300nm and d 2 =2nm . The real parts of matrix elements | P ^ + μ 12 | z (c) and | P ^ + μ 12 | y (d) as a function of wavelengths for molecule-NP complexes with two spheres (black line), three sphere (red line) and four spheres (green line). The other parameters are identical with those in Fig. 2.

Fig. 6
Fig. 6

Calculated CD signals as a function of wavelengths for molecule-NP complexes with two large spheres and one small sphere at d 2 =2nm . (a) left-opened structure with molecular orientation at θ=π/3 , (b) right-opened structure with molecular orientation at θ=π/3 , (c) right-opened structure with molecular orientation at θ=4π/3 . The other parameters are identical with those in Fig. 2.

Fig. 7
Fig. 7

Comparison between classical and QM-corrected results for calculated CD signals as a function of wavelengths for molecule-NP complexes with two large spheres and one small sphere at d 2 =1.5nm . The black line corresponds to classical results, red line is QM-corrected results, green line is the results with QM correction at d 2 =1.4nm .

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

Q= Q molecule + Q NP ,
CD= Q + Q Ω ,
C D total =C D molecule +C D NP ,
C D molecule = 8 ε r 3c ω 0 γ 21 | E 0 | 2 Im[ m 21 .( P ^ + μ 12 ) ] | ( ω- ω 0 )+i γ 21 -G | 2
G= 1 4π ε 0 μ 21 i ( Φ i out . μ 12 ) | r=r d ,
P ^ =[ p xx p xy p xz p yx p yy p yz p zx p zy p zz ].
C D NP,dipole-field = 2ω ε r 3cπ ε 0 i ( Im ε NP ) Im m 21 .[ K ^ + ( r )( i Φ i,tot . μ 21 ) ] ( ω- ω 0 )+i γ 21 -G dV,
C D NP,dipole-diploe = 8ω ε r 3c | E 0 | 2 Im[ m 21 .( P ^ + μ 12 ) ] | ( ω ω 0 )+i γ 21 -G | 2 Im( G ),
Φ i, tot ( r )= Φ 0 ( i ) + Φ i in + ji Φ j out ,
Φ j out = lm l ' m ' D l ' m ' ,j g l ' m ' ,lm ( r j - r i ) ( r- r i ) l Y lm ( θ r- r i , ϕ r- r i )
g l ' m ' ,lm ( r j - r i )= l 2 m 2 l 2 - l 1 = l ' 4π ( 2 l ' )! ( -1 ) l 2 ( 2 l 2 )! ( 2 l 1 +1 )! 1 | r j - r i | l 2 +1 C lm l 2 m 2 l ' m ' Y l 2 m 2 ( θ r j - r i , ϕ r j - r i ) .
K ^ =[ k rr k rθ k rϕ k θr k θθ k θϕ k ϕr k ϕθ k ϕϕ ].
ε(ω)= ε IB + ω p 2 i f S if ω if 2 ω 2 iγω ,
φ 0 = 1 4π ε 0 d r r 3 .
Φ 0 ( i ) = lm B lm,i ( 4π 2l+1 ) | r- r i | l r d,i l+2 Y lm ( θ r- r i , ϕ r- r i ) ( r d,i =| r d - r i |).
r r 3 =-( 1 r )
1 | r - r ' | = l=0 m=-l l ( 4π 2l+1 ) r < l r > l+1 Y l m* ( θ ' , ϕ ' ) Y l m ( θ,ϕ ),
B θ lm,i = θ ' [ Y l m* ( θ ' , ϕ ' ) ] θ ' = θ r d - r i , ϕ = ϕ r d - r i B ϕ lm,i = 1 sin θ ' ϕ ' [ Y l m* ( θ ' , ϕ ' ) ] θ ' = θ r d - r i , ϕ = ϕ r d - r i B r lm,i =-( l+1 ) [ Y l m* ( θ ' , ϕ ' ) ] θ ' = θ r d - r i , ϕ = ϕ r d - r i
[ B lm,i x B lm,i y B lm,i z ]= [ sinθcosϕ cosθcosϕ -sinϕ sinθsinϕ cosθsinϕ cosϕ cosθ -sinθ 0 ] θ ' = θ r d - r i , ϕ = ϕ r d - r i [ B lm,i r B lm,i θ B lm,i ϕ ].
Φ i ={ lm D lm,i 1 | r- r i | l+1 Y lm ( θ r- r i , ϕ r- r i ) ( | r- r i | R i ), Φ i out lm D lm,i | r- r i | l R i 2l+1 Y lm ( θ r- r i , ϕ r- r i ) ( | r- r i | R i ), Φ i in Φ j ={ lm D lm,j 1 | r- r j | l+1 Y lm ( θ r- r j , ϕ r- r j ) ( | r- r j | R j ), Φ j out lm D lm,j | r- r j | l R j 2l+1 Y lm ( θ r- r j , ϕ r- r j ) ( | r- r j | R j ), Φ j in .
{ Y l 1 ( θ 1 , ϕ 1 ) Y l 2 ( θ 2 , ϕ 2 )} lm = m 1 , m 2 C l 1 m 1 l 2 m 2 lm Y l 1 m 1 ( θ 1 , ϕ 1 ) Y l 2 m 2 ( θ 2 , ϕ 2 ) ,
1 r l+1 Y lm ( θ,ϕ )= 4π ( 2l )! l 1 , l 2 =0 l 2 - l 1 =l l ( -1 ) l 2 ( 2 l 2 )! ( 2 l 1 +1 )! r 1 l 1 r 2 l 2 +1 { Y l 1 ( θ 1 , ϕ 1 ) Y l 2 ( θ 2 , ϕ 2 )} lm ,
1 | r- r j | l+1 Y lm ( θ r- r j , ϕ r- r j ) = 1 | (r- r i )-( r j - r i ) | l+1 Y lm ( θ (r- r i )-( r j - r i ) , ϕ (r- r i )-( r j - r i ) ) = 4π ( 2l )! l 1 , l 2 =0 l 2 - l 1 =l l ( -1 ) l 2 ( 2 l 2 )! ( 2 l 1 +1 )! | r- r i | l 1 | r j - r i | l 2 +1 m 1 , m 2 C l 1 m 1 l 2 m 2 lm Y l 1 m 1 ( θ r- r i , ϕ r- r i ) Y l 2 m 2 ( θ r j - r i , ϕ r j - r i ) , = l 1 m 1 g lm, l 1 m 1 ( r j - r i ) ( r- r i ) l 1 Y l 1 m 1 ( θ r- r i , ϕ r- r i )
g lm, l 1 m 1 ( r j - r i )= l 2 m 2 l 2 - l 1 =l 4π ( 2l )! ( -1 ) l 2 ( 2 l 2 )! ( 2 l 1 +1 )! 1 | r j - r i | l 2 +1 C l 1 m 1 l 2 m 2 lm Y l 2 m 2 ( θ r j - r i , ϕ r j - r i ) ,
l ' m ' D l ' m ' ,j 1 | r- r j | l ' +1 Y l ' m ' ( θ r- r j , ϕ r- r j ) = l ' m ' D l ' m ' ,j 1 | (r- r i )-( r j - r i ) | l ' +1 Y l ' m ' ( θ (r- r i )-( r j - r i ) , ϕ (r- r i )-( r j - r i ) ) = lm l ' m ' D l ' m ' ,j g l ' m ' ,lm ( r j - r i ) ( r- r i ) l Y lm ( θ r- r i , ϕ r- r i )
g l ' m ' ,lm ( r j - r i )= l 2 m 2 l 2 - l 1 = l ' 4π ( 2 l ' )! ( -1 ) l 2 ( 2 l 2 )! ( 2 l 1 +1 )! 1 | r j - r i | l 2 +1 C lm l 2 m 2 l ' m ' Y l 2 m 2 ( θ r j - r i , ϕ r j - r i ) .
φ j out = lm D lm,j 1 | r- r j | l+1 Y lm ( θ r- r j , ϕ r- r j ) = lm l ' m ' D l ' m ' ,j g l ' m ' ,lm ( r j - r i ) ( r- r i ) l Y lm ( θ r- r i , ϕ r- r i ),
g l ' m ' ,lm ( r j - r i )= l 2 m 2 l 2 - l 1 = l ' 4π ( 2 l ' )! ( -1 ) l 2 ( 2 l 2 )! ( 2 l 1 +1 )! 1 | r j - r i | l 2 +1 C lm l 2 m 2 l ' m ' Y l 2 m 2 ( θ r j - r i , ϕ r j - r i ) .
ε NP { B lm,i ( 4π 2l+1 ) l | r- r i | l-1 r d,i l+2 + D lm,i l | r- r i | l-1 R i 2l+1 } Y lm ( θ r- r i , ϕ r- r i )+ ε NP [ l ' m ' ji D l ' m ' ,j g l ' m ' ,lm ( r j - r i )]l ( r- r i ) l-1 Y lm ( θ r- r i , ϕ r- r i ) = ε 0 { B lm,i ( 4π 2l+1 ) l | r- r i | l-1 r d,i l+2 + D lm,i -( l+1 ) | r- r i | l+2 } Y lm ( θ r- r i , ϕ r- r i )+ ε 0 [ l ' m ' ji D l ' m ' ,j g l ' m ' ,lm ( r j - r i )]l ( r- r i ) l-1 Y lm ( θ r- r i , ϕ r- r i ) | r- r i = R i ε NP B lm,i ( 4π 2l+1 ) l R i l-1 r d,i l+2 + D lm,i ε NP l R i l+2 + ε NP [ l ' m ' ji D l ' m ' ,j g l ' m ' ,lm ( r j - r i )]l R i l-1 = ε 0 B lm,i ( 4π 2l+1 ) l R i l-1 r d,i l+2 + D lm,i -( l+1 ) ε 0 R i l+2 + ε 0 [ l ' m ' ji D l ' m ' ,j g l ' m ' ,lm ( r j - r i )]l R i l-1 .

Metrics