Abstract

The paper investigates the performance of a blind symbol synchronisation technique for optical OFDM systems based on virtual subcarriers. The test-bed includes a real-time 16-QAM OFDM transmitter operating at a net data rate of 30.65 Gb/s using a single OFDM band with a single FPGA-DAC subsystem and demonstrates transmission over 23.3 km SSMF with direct detection at a BER of 10−3. By comparing the performance of the proposed synchronisation scheme with that of the Schmidl and Cox algorithm, it was found that the two approaches achieve similar performance for large numbers of averaging symbols, but the performance of the proposed scheme degrades as the number of averaging symbols is reduced. The proposed technique has lower complexity and bandwidth overhead as it does not rely on training sequences. Consequently, it is suitable for implementation in high speed optical OFDM transceivers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [CrossRef]
  2. Y. Benlachtar, R. Bouziane, R. I. Killey, C. Berger, P. A. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, and M. Glick, “Optical OFDM for the data center,” in Proc. International Conference on Transparent Optical Networks (ICTON2010), paper We.A4.3.
    [CrossRef]
  3. T. M. Schmidl, D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
    [CrossRef]
  4. R. P. Giddings and J. M. Tang, “Real-Time experimental demonstration of a versatile optical OFDM symbol synchronization technique using low-power DC offset signalling,” in Proc. European Conference and Exhibition on Optical Communication (ECOC2011), paper We.9.A.3.
  5. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Real-time experimental demonstration of optical OFDM symbol synchronization in directly modulated DFB laser-based 25km SMF IMDD systems,” Opt. Express 18(20), 21100–21110 (2010).
    [CrossRef] [PubMed]
  6. R. Bouziane, Y. Benlachtar, and R. I. Killey, “Frequency-based frame synchronization for high-speed optical OFDM,” in Proc. Photonics in Switching Conference (2012), paper Th-S15-O12.
  7. R. Bouziane, R. Schmogrow, D. Hillerkuss, P. A. Milder, C. Koos, W. Freude, J. Leuthold, P. Bayvel, R. I. Killey, “Generation and transmission of 85.4 Gb/s real-time 16QAM coherent optical OFDM signals over 400 km SSMF with preamble-less reception,” Opt. Express 20(19), 21612–21617 (2012).
    [CrossRef] [PubMed]
  8. R. Bouziane, “OFDM symbol synchronization based on virtual subcarriers,” in Proc. IEEE Photonics Conference (2013), paper MG1.4.
    [CrossRef]
  9. R. Bouziane, P. A. Milder, S. Kilmurray, B. C. Thomsen, S. Pachnicke, P. Bayvel, and R. I. Killey, “Blind symbol synchronisation in direct-detection optical OFDM using virtual subcarriers,” in Proc. Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper Th3K.5.
  10. H. Liu, U. Tureli, “A high-efficiency carrier estimator for OFDM communications,” IEEE Commun. Lett. 2(4), 104–106 (1998).
    [CrossRef]
  11. U. Tureli, H. Liu, M. D. Zoltowski, “OFDM blind carrier offset estimation: ESPRIT,” IEEE Trans. Commun. 48(9), 1459–1461 (2000).
    [CrossRef]
  12. X. Ma, C. Tepedelenlioglu, G. B. Giannakis, S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance,” IEEE J. Sel. Areas Comm. 19(12), 2504–2515 (2001).
    [CrossRef]
  13. D. Huang, K. B. Letaief, “Carrier frequency offset estimation for OFDM systems using null sub-carriers,” IEEE Trans. Commun. 54(5), 813–823 (2006).
    [CrossRef]
  14. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
    [CrossRef] [PubMed]
  15. J. Tang, E. Hugues-Salas, and R. Giddings, “First experimental demonstration of real-time adaptive transmission of 20Gb/s dual-band optical OFDM signals over 500m OM2 MMFs,” in Proc. Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh3A.1.
    [CrossRef]
  16. S. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” in Proc. 18th OptoElect. And Comm. Conf. (OECC), Kyoto, Japan (2013), Paper WP2-3.
  17. D. Qian, T. T.-O. Kwok, N. Cvijetic, J. Hu, and T. Wang, “41.25 Gb/s real-time OFDM receiver for variable rate WDM-OFDMA-PON transmission,” in Proc. Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper PDPD9.
    [CrossRef]
  18. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” in Proc. European Conference and Exhibition on Optical Communication (2013), paper P.6.7.
  19. F. Li, X. Xiao, X. Li, and Z. Dong, “Real-time demonstration of DMT-based DDO-OFDM transmission and reception at 50Gb/s,” in Proc. European Conference and Exhibition on Optical Communication (2013), paper P.6.13.
  20. P. Milder, F. Franchetti, J. C. Hoe, M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst. 17(2), 1–33 (2012).
    [CrossRef]
  21. F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
    [CrossRef]
  22. N. Kaneda, Y. Qi, L. Xiang, S. Chandrasekhar, W. Shieh, Y. Chen, “Real-time 2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM,” J. Lightwave Technol. 28(4), 494–501 (2010).
    [CrossRef]

2012

2011

2010

2006

D. Huang, K. B. Letaief, “Carrier frequency offset estimation for OFDM systems using null sub-carriers,” IEEE Trans. Commun. 54(5), 813–823 (2006).
[CrossRef]

2001

X. Ma, C. Tepedelenlioglu, G. B. Giannakis, S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance,” IEEE J. Sel. Areas Comm. 19(12), 2504–2515 (2001).
[CrossRef]

2000

U. Tureli, H. Liu, M. D. Zoltowski, “OFDM blind carrier offset estimation: ESPRIT,” IEEE Trans. Commun. 48(9), 1459–1461 (2000).
[CrossRef]

1998

H. Liu, U. Tureli, “A high-efficiency carrier estimator for OFDM communications,” IEEE Commun. Lett. 2(4), 104–106 (1998).
[CrossRef]

1997

T. M. Schmidl, D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[CrossRef]

Barbarossa, S.

X. Ma, C. Tepedelenlioglu, G. B. Giannakis, S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance,” IEEE J. Sel. Areas Comm. 19(12), 2504–2515 (2001).
[CrossRef]

Bayvel, P.

Bouziane, R.

Chandrasekhar, S.

Chang, F.

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Chen, Y.

Cox, D. C.

T. M. Schmidl, D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[CrossRef]

Cvijetic, N.

Franchetti, F.

P. Milder, F. Franchetti, J. C. Hoe, M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst. 17(2), 1–33 (2012).
[CrossRef]

Freude, W.

Giannakis, G. B.

X. Ma, C. Tepedelenlioglu, G. B. Giannakis, S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance,” IEEE J. Sel. Areas Comm. 19(12), 2504–2515 (2001).
[CrossRef]

Giddings, R. P.

Hillerkuss, D.

Hoe, J. C.

P. Milder, F. Franchetti, J. C. Hoe, M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst. 17(2), 1–33 (2012).
[CrossRef]

Hong, Y.

Huang, D.

D. Huang, K. B. Letaief, “Carrier frequency offset estimation for OFDM systems using null sub-carriers,” IEEE Trans. Commun. 54(5), 813–823 (2006).
[CrossRef]

Hugues-Salas, E.

Jin, X. Q.

Kaneda, N.

Killey, R. I.

Koos, C.

Letaief, K. B.

D. Huang, K. B. Letaief, “Carrier frequency offset estimation for OFDM systems using null sub-carriers,” IEEE Trans. Commun. 54(5), 813–823 (2006).
[CrossRef]

Leuthold, J.

Liu, H.

U. Tureli, H. Liu, M. D. Zoltowski, “OFDM blind carrier offset estimation: ESPRIT,” IEEE Trans. Commun. 48(9), 1459–1461 (2000).
[CrossRef]

H. Liu, U. Tureli, “A high-efficiency carrier estimator for OFDM communications,” IEEE Commun. Lett. 2(4), 104–106 (1998).
[CrossRef]

Ma, X.

X. Ma, C. Tepedelenlioglu, G. B. Giannakis, S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance,” IEEE J. Sel. Areas Comm. 19(12), 2504–2515 (2001).
[CrossRef]

Milder, P.

P. Milder, F. Franchetti, J. C. Hoe, M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst. 17(2), 1–33 (2012).
[CrossRef]

Milder, P. A.

Mizuochi, T.

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Onohara, K.

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Püschel, M.

P. Milder, F. Franchetti, J. C. Hoe, M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst. 17(2), 1–33 (2012).
[CrossRef]

Qi, Y.

Schmidl, T. M.

T. M. Schmidl, D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[CrossRef]

Schmogrow, R.

Shieh, W.

Shu, C.

Tang, J. M.

Tepedelenlioglu, C.

X. Ma, C. Tepedelenlioglu, G. B. Giannakis, S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance,” IEEE J. Sel. Areas Comm. 19(12), 2504–2515 (2001).
[CrossRef]

Tureli, U.

U. Tureli, H. Liu, M. D. Zoltowski, “OFDM blind carrier offset estimation: ESPRIT,” IEEE Trans. Commun. 48(9), 1459–1461 (2000).
[CrossRef]

H. Liu, U. Tureli, “A high-efficiency carrier estimator for OFDM communications,” IEEE Commun. Lett. 2(4), 104–106 (1998).
[CrossRef]

Wei, J. L.

Xiang, L.

Zheng, X.

Zoltowski, M. D.

U. Tureli, H. Liu, M. D. Zoltowski, “OFDM blind carrier offset estimation: ESPRIT,” IEEE Trans. Commun. 48(9), 1459–1461 (2000).
[CrossRef]

ACM Trans. Des. Autom. Electron. Syst.

P. Milder, F. Franchetti, J. C. Hoe, M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst. 17(2), 1–33 (2012).
[CrossRef]

IEEE Commun. Lett.

H. Liu, U. Tureli, “A high-efficiency carrier estimator for OFDM communications,” IEEE Commun. Lett. 2(4), 104–106 (1998).
[CrossRef]

IEEE Commun. Mag.

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

IEEE J. Sel. Areas Comm.

X. Ma, C. Tepedelenlioglu, G. B. Giannakis, S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance,” IEEE J. Sel. Areas Comm. 19(12), 2504–2515 (2001).
[CrossRef]

IEEE Trans. Commun.

D. Huang, K. B. Letaief, “Carrier frequency offset estimation for OFDM systems using null sub-carriers,” IEEE Trans. Commun. 54(5), 813–823 (2006).
[CrossRef]

T. M. Schmidl, D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[CrossRef]

U. Tureli, H. Liu, M. D. Zoltowski, “OFDM blind carrier offset estimation: ESPRIT,” IEEE Trans. Commun. 48(9), 1459–1461 (2000).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

R. Bouziane, Y. Benlachtar, and R. I. Killey, “Frequency-based frame synchronization for high-speed optical OFDM,” in Proc. Photonics in Switching Conference (2012), paper Th-S15-O12.

R. P. Giddings and J. M. Tang, “Real-Time experimental demonstration of a versatile optical OFDM symbol synchronization technique using low-power DC offset signalling,” in Proc. European Conference and Exhibition on Optical Communication (ECOC2011), paper We.9.A.3.

R. Bouziane, “OFDM symbol synchronization based on virtual subcarriers,” in Proc. IEEE Photonics Conference (2013), paper MG1.4.
[CrossRef]

R. Bouziane, P. A. Milder, S. Kilmurray, B. C. Thomsen, S. Pachnicke, P. Bayvel, and R. I. Killey, “Blind symbol synchronisation in direct-detection optical OFDM using virtual subcarriers,” in Proc. Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper Th3K.5.

J. Tang, E. Hugues-Salas, and R. Giddings, “First experimental demonstration of real-time adaptive transmission of 20Gb/s dual-band optical OFDM signals over 500m OM2 MMFs,” in Proc. Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh3A.1.
[CrossRef]

S. Cho, K. W. Doo, J. H. Lee, J. Lee, S. I. Myong, and S. S. Lee, “Demonstration of a real-time 16 QAM encoded 11.52 Gb/s OFDM transceiver for IM/DD OFDMA-PON systems,” in Proc. 18th OptoElect. And Comm. Conf. (OECC), Kyoto, Japan (2013), Paper WP2-3.

D. Qian, T. T.-O. Kwok, N. Cvijetic, J. Hu, and T. Wang, “41.25 Gb/s real-time OFDM receiver for variable rate WDM-OFDMA-PON transmission,” in Proc. Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper PDPD9.
[CrossRef]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” in Proc. European Conference and Exhibition on Optical Communication (2013), paper P.6.7.

F. Li, X. Xiao, X. Li, and Z. Dong, “Real-time demonstration of DMT-based DDO-OFDM transmission and reception at 50Gb/s,” in Proc. European Conference and Exhibition on Optical Communication (2013), paper P.6.13.

Y. Benlachtar, R. Bouziane, R. I. Killey, C. Berger, P. A. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, and M. Glick, “Optical OFDM for the data center,” in Proc. International Conference on Transparent Optical Networks (ICTON2010), paper We.A4.3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the transmitter DSP.

Fig. 2
Fig. 2

Experimental system setup. VOA: variable optical attenuator, EDFA: erbium-doped fibre amplifier, Rx: receiver.

Fig. 3
Fig. 3

(a) BER versus received optical power in the optical back-to-back configuration, and after transmission over 23.3 km SSMF. The HD-FEC limit of 3.8x10−3 is shown as a straight line. Example constellation diagrams of the received signal at 2 dBm received power, (b) all subcarriers, back-to-back (c) all subcarriers, after 23.3 km transmission, (d) 10th subcarrier only, back-to-back and (e) 10th subcarrier only, 23.3 km transmission.

Fig. 4
Fig. 4

Power of virtual subcarriers versus symbol offset in the transmission case with 2 dBm received optical power and (a) 100 averaging symbols, (b) different numbers of averaging symbols.

Fig. 5
Fig. 5

(a) Performance comparison between Schmidl and Cox algorithm (S&C) and the proposed non-data aided synchronisation method using different numbers of averaging symbols in the optical back-to-back configuration. (b) Minimum received power to match the performance of S&C vs. number of averaging symbols.

Fig. 6
Fig. 6

(a) Performance comparison between Schmidl and Cox algorithm (S&C) and the proposed non-data aided synchronisation method using different numbers of averaging symbols after transmission over 23.3 km SSMF. (b) Minimum received power to match the performance of S&C versus number of averaging symbols.

Metrics