Abstract

We propose a kind of heterogeneous multi-core fiber (Hetero-MCF) with trench-assisted multi-step index few-mode core (TA-MSI-FMC) deployed inside. After analyzing the impact of each parameter on differential mode delay (DMD), we design a couple of TA-MSI-FMCs with Aeff of 110 μm2 for LP01 mode. DMD of each TA-MSI-FMC is smaller than |170| ps/km over C + L band and the total DMD can approach almost 0 ps/km over C + L band if we adopt DMD managed transmission line technique by using only one kind of Hetero-TA-FM-MCF. For such Hetero-TA-FM-MCF, crosstalk is about –30 dB/100km at wavelength of 1550 nm as bending radius becomes larger than 15 cm, core number can reach 12, a relative core multiplicity factor (RCMF) is 15.7, and the RCMF can even reach 26.1 if we treat LP11 mode as two special modes thanks to the multiple-input-multiple-output technology.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
    [CrossRef] [PubMed]
  2. M. Bigot-Astruc, D. Boivin, and P. Sillard, “Design and fabrication of weakly-coupled few-modes fibers,” in IEEE Photonics Society Summer Topical Meetings (2012), paper TuC1.1.
  3. K. Takenaga, Y. Sasaki, N. Guan, M. Kasahara, K. Saitoh, M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photon. Technol. Lett. 24(21), 1941–1944 (2012).
    [CrossRef]
  4. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May-Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Low-crosstalk few-mode multi-core fiber for high-mode-density space-division multiplexing,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.5.
  5. R. Maruyama, N. Kuwaki, S. Matuo, K. Sato, and M. Ohashi, “Mode dispersion compensating optical transmission line composed of two-mode optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.13.
  6. T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Differential mode delay managed transmission line for wide-band WDM-MIMO system,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.1.
    [CrossRef]
  7. M. Li, E. Ip, and Y. Huang, “Large effective area FMF with low DMGD,” in IEEE Photonics Society Summer Topical Meetings (2013), paper MC3.4.
  8. K. Sato, R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi, “Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss,” Opt. Express 21(14), 16231–16238 (2013).
    [CrossRef] [PubMed]
  9. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Low DMD four LP mode transmission fiber for wide-band WDM-MIMO system,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh3K.1.
    [CrossRef]
  10. R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “DMD free transmission line composed of TMFs with large effective area for MIMO processing,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Tu.1.F.2.
    [CrossRef]
  11. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
    [CrossRef] [PubMed]
  12. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, S. Matsuo, “Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density,” J. Lightwave Technol. 31(15), 2590–2598 (2013).
    [CrossRef]
  13. T. Sakamoto, T. Mori, T. Yamamoto, S. Tomita, “Differential mode delay managed transmission line for WDM-MIMO system using multi-step index fiber,” J. Lightwave Technol. 30(17), 2783–2787 (2012).
    [CrossRef]
  14. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Investigation of crosstalk dependencies on bending radius of heterogeneous multicore fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh3K.3.
    [CrossRef]
  15. K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [CrossRef]
  16. T. Matsui, K. Nakajima, C. Fukai, “Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands,” J. Lightwave Technol. 27(23), 5410–5416 (2009).
    [CrossRef]
  17. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6.
    [CrossRef]
  18. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.
    [CrossRef]
  19. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [CrossRef] [PubMed]
  20. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
    [CrossRef] [PubMed]
  21. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011).
    [CrossRef] [PubMed]
  22. S. Randel, R. Ryf, A. H. Gnauck, M. A. Mestre, C. Schmidt, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.5.
    [CrossRef]

2013

2012

2011

2009

2002

K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Akamatsu, T.

Arakawa, Y.

Chandrasekhar, S.

Dimarcello, F. V.

Fini, J. M.

Fishteyn, M.

Fukai, C.

Guan, N.

K. Takenaga, Y. Sasaki, N. Guan, M. Kasahara, K. Saitoh, M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photon. Technol. Lett. 24(21), 1941–1944 (2012).
[CrossRef]

Ishida, I.

Kasahara, M.

K. Takenaga, Y. Sasaki, N. Guan, M. Kasahara, K. Saitoh, M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photon. Technol. Lett. 24(21), 1941–1944 (2012).
[CrossRef]

Koshiba, M.

Kosihba, M.

Kuwaki, N.

Liu, X.

Maruyama, R.

Matsui, T.

Matsuo, S.

Monberg, E. M.

Mori, T.

Nakajima, K.

Ohashi, M.

Okuyama, K.

Saitoh, K.

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, S. Matsuo, “Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density,” J. Lightwave Technol. 31(15), 2590–2598 (2013).
[CrossRef]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
[CrossRef] [PubMed]

K. Takenaga, Y. Sasaki, N. Guan, M. Kasahara, K. Saitoh, M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photon. Technol. Lett. 24(21), 1941–1944 (2012).
[CrossRef]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
[CrossRef] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Sakamoto, T.

Sasaki, Y.

Sato, K.

Takenaga, K.

Taniagwa, S.

Tanigawa, S.

Taunay, T. F.

Tomita, S.

Tu, J.

Yamamoto, T.

Yan, M. F.

Zhu, B.

IEEE J. Quantum Electron.

K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Takenaga, Y. Sasaki, N. Guan, M. Kasahara, K. Saitoh, M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photon. Technol. Lett. 24(21), 1941–1944 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6.
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.
[CrossRef]

S. Randel, R. Ryf, A. H. Gnauck, M. A. Mestre, C. Schmidt, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.5.
[CrossRef]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May-Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Low-crosstalk few-mode multi-core fiber for high-mode-density space-division multiplexing,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.5.

R. Maruyama, N. Kuwaki, S. Matuo, K. Sato, and M. Ohashi, “Mode dispersion compensating optical transmission line composed of two-mode optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.13.

T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Differential mode delay managed transmission line for wide-band WDM-MIMO system,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.1.
[CrossRef]

M. Li, E. Ip, and Y. Huang, “Large effective area FMF with low DMGD,” in IEEE Photonics Society Summer Topical Meetings (2013), paper MC3.4.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Low DMD four LP mode transmission fiber for wide-band WDM-MIMO system,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh3K.1.
[CrossRef]

R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “DMD free transmission line composed of TMFs with large effective area for MIMO processing,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Tu.1.F.2.
[CrossRef]

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Investigation of crosstalk dependencies on bending radius of heterogeneous multicore fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh3K.3.
[CrossRef]

M. Bigot-Astruc, D. Boivin, and P. Sillard, “Design and fabrication of weakly-coupled few-modes fibers,” in IEEE Photonics Society Summer Topical Meetings (2012), paper TuC1.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Refractive index profiles of TA-MSI-FMC.

Fig. 2
Fig. 2

DMD and DMD slope as function of r2/r1 at λ = 1550 nm when a1 = 3.6 µm, Δ1 = 0.5%, r1/a1 = 2.0, Δd = −0.13%, W/r1 = 1.0, and Δt = −0.7%.

Fig. 3
Fig. 3

DMD and DMD slope as function of r1/a1 and Δd at λ = 1550 nm when a1 = 3.6 µm, Δ1 = 0.5%, r2/r1 = 1.6, W/r1 = 1.0, and Δt = −0.7%.

Fig. 4
Fig. 4

DMD at λ of 1550 nm as function of a1 and Δ1 when r2/r1 = 1.6, Δd = −0.13%, r1/a1 = 2.0, W/r1 = 1.0, and Δt = −0.7%.

Fig. 5
Fig. 5

DMD at λ of 1550 nm as function of a1 and Δ1 when r1/a1 = 2.0, W/r1 = 1.0, and Δt = −0.7%, where (a) r2/r1 = 1.3, Δd = −0.16%, (b) r2/r1 = 1.4, Δd = −0.15%, (c) r2/r1 = 1.5, Δd = −0.14%, (d) r2/r1 = 1.6, Δd = −0.13%, (e) r2/r1 = 1.7, Δd = −0.12%, (f) r2/r1 = 1.8, Δd = −0.11%.

Fig. 6
Fig. 6

Wavelength dependence of DMD for core 1 and core 2 when r1/a1 = 2.0, Δt = −0.7%, W/r1 = 0.8 for core 1, and W/r1 = 0.2 for core 2, where (a) r2/r1 = 1.3, Δd = −0.16%, (b) r2/r1 = 1.4, Δd = −0.15%, (c) r2/r1 = 1.5, Δd = −0.14%, (d) r2/r1 = 1.6, Δd = −0.13%, (e) r2/r1 = 1.7, Δd = −0.12%, (f) r2/r1 = 1.8, Δd = −0.11%.

Fig. 7
Fig. 7

(a) DMD dependence on W/r1 and (b) DMD slope dependence on W/r1 when a1 = 3.6 µm, Δ1 = 0.5%, r1/a1 = 2.0, and Δt = −0.7%.

Fig. 8
Fig. 8

(a) DMD dependence on Δt and (b) DMD slope dependence on Δt when a1 = 3.6 µm, Δ1 = 0.5%, r1/a1 = 2.0, and W/r1 = 1.0.

Fig. 9
Fig. 9

Inter-core crosstalk at λ = 1550 nm, R = 500, mm and L = 100 km as function of core pitch.

Fig. 10
Fig. 10

Bending radius dependence of XT11-11 at λ = 1550 nm after 100-km propagation when Λ = 37 µm.

Fig. 11
Fig. 11

Core pitch dependence of cladding diameter.

Fig. 12
Fig. 12

The relationship between XT and RCMF for SM-MCFs and FM-MCFs.

Tables (1)

Tables Icon

Table 1 The design parameters and characteristics of core1 and core 2

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

DMD= τ LP11 τ LP01 = n eff11 n eff01 c λ c ( n eff11 λ n eff01 λ ),
RCMF=CM F FMMCF / 80 (π/4) 125 2 .

Metrics