Abstract

We have developed a 4 × 25 Gb/s ROSA (receiver optical sub-assembly) module for 100G Ethernet optical transceiver. This ROSA module has very large alignment tolerance of more than ± 250 µm between the optical DMUX (demultiplexer) and four photodiodes, for the reason it has the advantage of being easily assembled. The large alignment tolerance can be attributed to the dimensional tolerant optical DMUX, which is composed of four thin film filters attached to a parallelogram-shaped optic block. Since it is important to define the fabrication specifications for the dimension of the optic block, we analyze dimensional tolerance for the optic block using three-dimensional simulation. This parallelogram-shaped optical DMUX permits length tolerance of ± 300 µm and angular tolerance of ± 0.1°. The fabricated optical DMUX is estimated to have the angular error of less than 0.09°.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IEEE Standard 802.3baTM, “Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, Amendment 4: Media Access Control Parameters, Physical Layers and Management Parameters for 40 Gb/s and 100 Gb/s Operation,” (2010).
  2. IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force. http://www.ieee802.org/3/bm/public/index.html/
  3. Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 x 25G Gb/s) Ethernet with a PLC-based AWG demultiplexer,” in Proceedings of Optical Fiber Communication Conference, Paper NW1J.5 (2013).
    [CrossRef]
  4. T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, and E. Yoshida, “Compact and High-Sensitivity 100-Gb/s (4 x 25 Gb/s) APD-ROSA with a LAN-WDM PLC Demultiplexer, ” in Proceedings of European Conference on Optical Communication, Paper Th.3.B.5 (2012).
    [CrossRef]
  5. J. K. Lee, S.-K. Kang, J. Y. Huh, and Y.-S. Jang, “Highly Alignment Tolerant 4 x 25 Gb/s ROSA Module for 100G Ethernet Optical Transceiver,” in Proceedings of European Conference on Optical Communication, Paper P.2.1 (2013).
  6. M.-C. Lin, T.-T. Shih, H. Chieh, C.-C. Cheng, P.-H. Tseng, W.-H. Cheng, “A 40-Gb/s Optical Module Using 4-Channel WDM TOSA for Access Network Applications,” Proc. 57th Electronic Components and Technology Conference, pp.728–733 (2007).
    [CrossRef]
  7. G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
    [CrossRef]
  8. H. Aruga, K. Mochizuki, H. Itamoto, R. Takemura, K. Yamagishi, M. Nakaji, and A. Sugitatsu, “Four-channel 25Gbps Optical Receiver for 100Gbps Ethernet with Built-in Demultiplexer Optics,” in Proceedings of European Conference on Optical Communication, Paper Th.10.D.4 (2010).
    [CrossRef]
  9. S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, ” A cost-effective and compact 28-Gb/s ROSA module using a novel TO-CAN package,” Proc. 62nd Electronic Components and Technology Conference, pp. 1992–1996 (2012).
    [CrossRef]
  10. S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
    [CrossRef]
  11. J. Deegan, “Precision Glass Molding Technical Brief,” (2007), http://www.rpoptics.com/Portals/0/docs/Precision%20Glass%20Molding%20Technical%20Brief_2(1).pdf
  12. B. d. Greve, “Reflections and Refractions in Ray Tracing,” (2006), http://graphics.stanford.edu/courses/cs148-10-summer/docs/2006–degreve–reflection_refraction.pdf .

2013 (1)

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
[CrossRef]

2008 (1)

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Cheng, C.-C.

M.-C. Lin, T.-T. Shih, H. Chieh, C.-C. Cheng, P.-H. Tseng, W.-H. Cheng, “A 40-Gb/s Optical Module Using 4-Channel WDM TOSA for Access Network Applications,” Proc. 57th Electronic Components and Technology Conference, pp.728–733 (2007).
[CrossRef]

Cheng, W.-H.

M.-C. Lin, T.-T. Shih, H. Chieh, C.-C. Cheng, P.-H. Tseng, W.-H. Cheng, “A 40-Gb/s Optical Module Using 4-Channel WDM TOSA for Access Network Applications,” Proc. 57th Electronic Components and Technology Conference, pp.728–733 (2007).
[CrossRef]

Chieh, H.

M.-C. Lin, T.-T. Shih, H. Chieh, C.-C. Cheng, P.-H. Tseng, W.-H. Cheng, “A 40-Gb/s Optical Module Using 4-Channel WDM TOSA for Access Network Applications,” Proc. 57th Electronic Components and Technology Conference, pp.728–733 (2007).
[CrossRef]

Guan, L. T.

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Hon-Shing, J. L.

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Huh, J. Y.

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
[CrossRef]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, ” A cost-effective and compact 28-Gb/s ROSA module using a novel TO-CAN package,” Proc. 62nd Electronic Components and Technology Conference, pp. 1992–1996 (2012).
[CrossRef]

Jing, L.

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Kang, S.-K.

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
[CrossRef]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, ” A cost-effective and compact 28-Gb/s ROSA module using a novel TO-CAN package,” Proc. 62nd Electronic Components and Technology Conference, pp. 1992–1996 (2012).
[CrossRef]

Kim, K.

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
[CrossRef]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, ” A cost-effective and compact 28-Gb/s ROSA module using a novel TO-CAN package,” Proc. 62nd Electronic Components and Technology Conference, pp. 1992–1996 (2012).
[CrossRef]

Lee, J.

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
[CrossRef]

Lee, J. C.

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
[CrossRef]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, ” A cost-effective and compact 28-Gb/s ROSA module using a novel TO-CAN package,” Proc. 62nd Electronic Components and Technology Conference, pp. 1992–1996 (2012).
[CrossRef]

Lee, J. K.

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
[CrossRef]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, ” A cost-effective and compact 28-Gb/s ROSA module using a novel TO-CAN package,” Proc. 62nd Electronic Components and Technology Conference, pp. 1992–1996 (2012).
[CrossRef]

Lin, M.-C.

M.-C. Lin, T.-T. Shih, H. Chieh, C.-C. Cheng, P.-H. Tseng, W.-H. Cheng, “A 40-Gb/s Optical Module Using 4-Channel WDM TOSA for Access Network Applications,” Proc. 57th Electronic Components and Technology Conference, pp.728–733 (2007).
[CrossRef]

Maruo, S.

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Ramana, P. V.

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Shih, T.-T.

M.-C. Lin, T.-T. Shih, H. Chieh, C.-C. Cheng, P.-H. Tseng, W.-H. Cheng, “A 40-Gb/s Optical Module Using 4-Channel WDM TOSA for Access Network Applications,” Proc. 57th Electronic Components and Technology Conference, pp.728–733 (2007).
[CrossRef]

Tangdiongga, G.

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Tseng, P.-H.

M.-C. Lin, T.-T. Shih, H. Chieh, C.-C. Cheng, P.-H. Tseng, W.-H. Cheng, “A 40-Gb/s Optical Module Using 4-Channel WDM TOSA for Access Network Applications,” Proc. 57th Electronic Components and Technology Conference, pp.728–733 (2007).
[CrossRef]

Wei, T. C.

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Yoon, C. Y.

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

ETRI Journal. (1)

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, J. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-CAN package,” ETRI Journal. 35(1), 001–006 (2013).
[CrossRef]

Proc. SPIE (1)

G. Tangdiongga, L. T. Guan, L. Jing, T. C. Wei, P. V. Ramana, C. Y. Yoon, S. Maruo, J. L. Hon-Shing, “Optical Design of 4-channel TOSA/ROSA for CWDM Applications,” Proc. SPIE 6899, 6899068998 (2008).
[CrossRef]

Other (10)

H. Aruga, K. Mochizuki, H. Itamoto, R. Takemura, K. Yamagishi, M. Nakaji, and A. Sugitatsu, “Four-channel 25Gbps Optical Receiver for 100Gbps Ethernet with Built-in Demultiplexer Optics,” in Proceedings of European Conference on Optical Communication, Paper Th.10.D.4 (2010).
[CrossRef]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, ” A cost-effective and compact 28-Gb/s ROSA module using a novel TO-CAN package,” Proc. 62nd Electronic Components and Technology Conference, pp. 1992–1996 (2012).
[CrossRef]

J. Deegan, “Precision Glass Molding Technical Brief,” (2007), http://www.rpoptics.com/Portals/0/docs/Precision%20Glass%20Molding%20Technical%20Brief_2(1).pdf

B. d. Greve, “Reflections and Refractions in Ray Tracing,” (2006), http://graphics.stanford.edu/courses/cs148-10-summer/docs/2006–degreve–reflection_refraction.pdf .

IEEE Standard 802.3baTM, “Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, Amendment 4: Media Access Control Parameters, Physical Layers and Management Parameters for 40 Gb/s and 100 Gb/s Operation,” (2010).

IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force. http://www.ieee802.org/3/bm/public/index.html/

Y. Doi, M. Oguma, M. Ito, I. Ogawa, T. Yoshimatsu, T. Ohno, E. Yoshida, and H. Takahashi, “Compact ROSA for 100-Gb/s (4 x 25G Gb/s) Ethernet with a PLC-based AWG demultiplexer,” in Proceedings of Optical Fiber Communication Conference, Paper NW1J.5 (2013).
[CrossRef]

T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, and E. Yoshida, “Compact and High-Sensitivity 100-Gb/s (4 x 25 Gb/s) APD-ROSA with a LAN-WDM PLC Demultiplexer, ” in Proceedings of European Conference on Optical Communication, Paper Th.3.B.5 (2012).
[CrossRef]

J. K. Lee, S.-K. Kang, J. Y. Huh, and Y.-S. Jang, “Highly Alignment Tolerant 4 x 25 Gb/s ROSA Module for 100G Ethernet Optical Transceiver,” in Proceedings of European Conference on Optical Communication, Paper P.2.1 (2013).

M.-C. Lin, T.-T. Shih, H. Chieh, C.-C. Cheng, P.-H. Tseng, W.-H. Cheng, “A 40-Gb/s Optical Module Using 4-Channel WDM TOSA for Access Network Applications,” Proc. 57th Electronic Components and Technology Conference, pp.728–733 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic diagram of the ROSA. (b) Block diagram of the ROSA. (c) Schematic diagram of the optical DMUX block.

Fig. 2
Fig. 2

(a) BER performance of the ROSA at data rate of 25.78 Gb/s, data pattern of PRBS 231–1. (b) Electrical output eye diagram of the ROSA at input power level of – 10 dBm. (c) Spectral response of the ROSA.

Fig. 3
Fig. 3

(a) A diagram of the optical block for three-dimensional simulation. (b) Illustration of the beam traveling paths through the optic block.

Fig. 4
Fig. 4

Displacement as a function of (a) L and θ1, (b) L and θ3 in the optic block. Tolerance of L was simulated to ~ ± 300 µm for the case of θ1 = 76.5°, θ2 = 103.5°, θ3 and θ4 = 90°.

Fig. 5
Fig. 5

Displacement as a function of (a) θ1 and θ2, (b) θ3 and θ4 in the optic block. The angular tolerances of θ1, θ2, θ3 and θ4 were simulated to ~ ± 0.1°.

Fig. 6
Fig. 6

Displacement as a function of θ1 and θ3 in the optic block. The angular tolerances of θ1 and θ3 were simulated to ~ ± 0.1°.

Fig. 7
Fig. 7

Calculation procedure of the displacements in case of being an error in θ1 in the optic block.

Fig. 8
Fig. 8

Displacement as a function of the collimator tilt angle. (a) Illustration of tilt angles ( α and β ) of the collimator. (b) Displacement against α and β . The angular tolerances of α and β were simulated to ~ ± 0.6°.

Fig. 9
Fig. 9

(a) Experimental setup for measuring the displacement and the dimensional errors of the fabricated optical DMUX block. (b) The measured results of the coupling efficiency along the X-axis. The peak values of the coupling efficiency represent output positions of the demultiplexed beams in the optical DMUX block.

Tables (1)

Tables Icon

Table 1 Design Values Used in the Simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t= η 1 η 2 i+( η 1 η 2 cos θ i 1 ( η 1 η 2 ) 2 sin 2 θ i )n
r=i 2( in )n
25 L t sinΔ θ 1 250μm
| Δ θ 1 +Δ θ 2 | ~0.09°

Metrics