Abstract

We first propose a multichannel optical filter with an ultra-narrow 3-dB bandwidth based on sampled Brillouin dynamic gratings (SBDGs). The multichannel optical filter is generated when an optical pulse interfaces with an optical pulse train based on an ordinary stimulated Brillouin scattering (SBS) process in a birefringent optical fiber. Multichannel optical filter based on SBDG is generated with a 3-dB bandwidth from 12.5 MHz to 1 GHz. In addition, a linearly chirped SBDG is proposed to generate multichannel dispersion compensator with a 3-dB bandwidth of 300 MHz and an extremely high dispersion value of 432 ns/nm. The proposed multichannel optical filters have important potential applications in the optical filtering, multichannel dispersion compensation and optical signal processing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Lee, M. P. Fok, S. M. Wan, C. Shu, “Optically controlled Sagnac loop comb filter,” Opt. Express 12(25), 6335–6340 (2004).
    [CrossRef] [PubMed]
  2. M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34(11), 1717–1719 (2009).
    [CrossRef] [PubMed]
  3. L. Xiang, D. Gao, Y. Yu, M. Ye, “Silicon-Based Integrated Comb Filter and Demultiplexer for Simultaneous WDM Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8200208 (2014).
    [CrossRef]
  4. Y. T. Dai, X. F. Chen, X. Xu, C. Fan, S. Z. Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. 17(5), 1040–1042 (2005).
    [CrossRef]
  5. M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
    [CrossRef]
  6. H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
    [CrossRef]
  7. M. Ibsen, A. Fu, H. Geiger, R. I. Laming, “All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35(12), 982–983 (1999).
    [CrossRef]
  8. M. Li, H. Li, Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only-sampled fiber Bragg grating,” Opt. Express 16(23), 19388–19394 (2008).
    [CrossRef] [PubMed]
  9. A. V. Buryak, K. Y. Kolossovski, D. Y. Stepanov, “Optimization of Refractive Index Sampling for Multichannel Fiber Bragg Gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
    [CrossRef]
  10. M. Li, X. Chen, J. Hayashi, H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009).
    [CrossRef] [PubMed]
  11. J. Guo, Y. Yang, G. Peng, “Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop,” Opt. Commun. 284(21), 5144–5147 (2011).
    [CrossRef]
  12. W. Jin, C. Wang, H. Xuan, W. Jin, “Tunable comb filters and refractive index sensors based on fiber loop mirror with inline high birefringence microfiber,” Opt. Lett. 38(21), 4277–4280 (2013).
    [CrossRef] [PubMed]
  13. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  14. X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000).
    [CrossRef]
  15. Y. Nasu, S. Yamashita, “Densification of sampled fiber Bragg gratings using multiple phase shift (MPS) technique,” J. Lightwave Technol. 23(4), 1808–1817 (2005).
    [CrossRef]
  16. J. Magné, P. Giaccari, S. LaRochelle, J. Azaña, L. R. Chen, “All-fiber comb filter with tunable free spectral range,” Opt. Lett. 30(16), 2062–2064 (2005).
    [CrossRef] [PubMed]
  17. K. Y. Song, H. J. Yoon, “Observation of narrowband intrinsic spectra of Brillouin dynamic gratings,” Opt. Lett. 35(17), 2958–2960 (2010).
    [CrossRef] [PubMed]
  18. K. Y. Song, W. Zou, Z. He, K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
    [CrossRef] [PubMed]
  19. K. Y. Song, H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010).
    [CrossRef] [PubMed]
  20. K. Y. Song, W. Zou, Z. He, K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
    [CrossRef] [PubMed]
  21. Y. Dong, L. Chen, X. Bao, “Characterization of the Brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
    [CrossRef] [PubMed]
  22. S. Chin, L. Thévenaz, “Tunable photonic delay lines in optical fibers,” Laser Photon. Rev. 6(6), 724–738 (2012).
    [CrossRef]
  23. Y. Dong, X. Bao, L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
    [CrossRef] [PubMed]
  24. W. Zou, Z. He, K. Y. Song, K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
    [CrossRef] [PubMed]
  25. K. Y. Song, S. Chin, N. Primerov, L. Thevenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
    [CrossRef]
  26. K. Y. Song, H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010).
    [CrossRef] [PubMed]
  27. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
    [CrossRef] [PubMed]
  28. H. G. Winful, “Chirped Brillouin dynamic gratings for storing and compressing light,” Opt. Express 21(8), 10039–10047 (2013).
    [CrossRef] [PubMed]
  29. M. Santagiustina, S. Chin, N. Primerov, L. Ursini, L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
    [CrossRef] [PubMed]
  30. J. Guo, N. Zhu, N. Huang, Y. Deng, W. Li, X. Wang, J. Liu, and M. Li, “Proposal of Sampled Brillouin Dynamic Gratings,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (2013), paper AF2D.14.
    [CrossRef]
  31. Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]

2014 (1)

L. Xiang, D. Gao, Y. Yu, M. Ye, “Silicon-Based Integrated Comb Filter and Demultiplexer for Simultaneous WDM Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8200208 (2014).
[CrossRef]

2013 (3)

2012 (2)

2011 (1)

J. Guo, Y. Yang, G. Peng, “Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop,” Opt. Commun. 284(21), 5144–5147 (2011).
[CrossRef]

2010 (5)

2009 (5)

2008 (2)

2007 (1)

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

2003 (2)

A. V. Buryak, K. Y. Kolossovski, D. Y. Stepanov, “Optimization of Refractive Index Sampling for Multichannel Fiber Bragg Gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
[CrossRef]

2000 (1)

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000).
[CrossRef]

1999 (1)

M. Ibsen, A. Fu, H. Geiger, R. I. Laming, “All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35(12), 982–983 (1999).
[CrossRef]

1998 (1)

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Antman, Y.

Azaña, J.

Bao, X.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Buryak, A. V.

A. V. Buryak, K. Y. Kolossovski, D. Y. Stepanov, “Optimization of Refractive Index Sampling for Multichannel Fiber Bragg Gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

Chen, L.

Chen, L. R.

Chen, X.

Chen, X. F.

Y. T. Dai, X. F. Chen, X. Xu, C. Fan, S. Z. Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. 17(5), 1040–1042 (2005).
[CrossRef]

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000).
[CrossRef]

Chin, S.

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

Dai, Y. T.

Y. T. Dai, X. F. Chen, X. Xu, C. Fan, S. Z. Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. 17(5), 1040–1042 (2005).
[CrossRef]

Dong, Y.

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Fan, C.

Y. T. Dai, X. F. Chen, X. Xu, C. Fan, S. Z. Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. 17(5), 1040–1042 (2005).
[CrossRef]

Fan, C. C.

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000).
[CrossRef]

Fok, M. P.

Fu, A.

M. Ibsen, A. Fu, H. Geiger, R. I. Laming, “All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35(12), 982–983 (1999).
[CrossRef]

Fujii, T.

Gao, D.

L. Xiang, D. Gao, Y. Yu, M. Ye, “Silicon-Based Integrated Comb Filter and Demultiplexer for Simultaneous WDM Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8200208 (2014).
[CrossRef]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Geiger, H.

M. Ibsen, A. Fu, H. Geiger, R. I. Laming, “All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35(12), 982–983 (1999).
[CrossRef]

Giaccari, P.

Guo, J.

J. Guo, Y. Yang, G. Peng, “Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop,” Opt. Commun. 284(21), 5144–5147 (2011).
[CrossRef]

Hayashi, J.

He, Z.

Hotate, K.

Hu, S.

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000).
[CrossRef]

Ibsen, M.

M. Ibsen, A. Fu, H. Geiger, R. I. Laming, “All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35(12), 982–983 (1999).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

Jin, W.

Kolossovski, K. Y.

A. V. Buryak, K. Y. Kolossovski, D. Y. Stepanov, “Optimization of Refractive Index Sampling for Multichannel Fiber Bragg Gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

Kudo, Y.

Laming, R. I.

M. Ibsen, A. Fu, H. Geiger, R. I. Laming, “All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35(12), 982–983 (1999).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

LaRochelle, S.

Lee, K. L.

Li, H.

Li, M.

Li, Y.

Luo, Y.

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000).
[CrossRef]

Magné, J.

Nasu, Y.

Painchaud, Y.

Peng, G.

J. Guo, Y. Yang, G. Peng, “Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop,” Opt. Commun. 284(21), 5144–5147 (2011).
[CrossRef]

Primerov, N.

Rothenberg, J. E.

Sales, S.

Sancho, J.

Santagiustina, M.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[CrossRef] [PubMed]

Sheng, Y.

Shu, C.

Song, K. Y.

Stepanov, D. Y.

A. V. Buryak, K. Y. Kolossovski, D. Y. Stepanov, “Optimization of Refractive Index Sampling for Multichannel Fiber Bragg Gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

Thevenaz, L.

Thévenaz, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[CrossRef] [PubMed]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
[CrossRef] [PubMed]

S. Chin, L. Thévenaz, “Tunable photonic delay lines in optical fibers,” Laser Photon. Rev. 6(6), 724–738 (2012).
[CrossRef]

Ursini, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[CrossRef] [PubMed]

Wan, S. M.

Wang, C.

Winful, H. G.

Xiang, L.

L. Xiang, D. Gao, Y. Yu, M. Ye, “Silicon-Based Integrated Comb Filter and Demultiplexer for Simultaneous WDM Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8200208 (2014).
[CrossRef]

Xie, S. Z.

Y. T. Dai, X. F. Chen, X. Xu, C. Fan, S. Z. Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. 17(5), 1040–1042 (2005).
[CrossRef]

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000).
[CrossRef]

Xu, X.

Y. T. Dai, X. F. Chen, X. Xu, C. Fan, S. Z. Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. 17(5), 1040–1042 (2005).
[CrossRef]

Xuan, H.

Yamashita, S.

Yang, Y.

J. Guo, Y. Yang, G. Peng, “Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop,” Opt. Commun. 284(21), 5144–5147 (2011).
[CrossRef]

Ye, M.

L. Xiang, D. Gao, Y. Yu, M. Ye, “Silicon-Based Integrated Comb Filter and Demultiplexer for Simultaneous WDM Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8200208 (2014).
[CrossRef]

Yoon, H. J.

Yu, Y.

L. Xiang, D. Gao, Y. Yu, M. Ye, “Silicon-Based Integrated Comb Filter and Demultiplexer for Simultaneous WDM Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8200208 (2014).
[CrossRef]

Zadok, A.

Zhu, Z.

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Zou, W.

Electron. Lett. (1)

M. Ibsen, A. Fu, H. Geiger, R. I. Laming, “All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35(12), 982–983 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. V. Buryak, K. Y. Kolossovski, D. Y. Stepanov, “Optimization of Refractive Index Sampling for Multichannel Fiber Bragg Gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Xiang, D. Gao, Y. Yu, M. Ye, “Silicon-Based Integrated Comb Filter and Demultiplexer for Simultaneous WDM Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8200208 (2014).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. T. Dai, X. F. Chen, X. Xu, C. Fan, S. Z. Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. 17(5), 1040–1042 (2005).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000).
[CrossRef]

J. Lightwave Technol. (4)

Laser Photon. Rev. (1)

S. Chin, L. Thévenaz, “Tunable photonic delay lines in optical fibers,” Laser Photon. Rev. 6(6), 724–738 (2012).
[CrossRef]

Opt. Commun. (1)

J. Guo, Y. Yang, G. Peng, “Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop,” Opt. Commun. 284(21), 5144–5147 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (10)

M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34(11), 1717–1719 (2009).
[CrossRef] [PubMed]

Y. Dong, X. Bao, L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
[CrossRef] [PubMed]

K. Y. Song, H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010).
[CrossRef] [PubMed]

K. Y. Song, H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010).
[CrossRef] [PubMed]

W. Jin, C. Wang, H. Xuan, W. Jin, “Tunable comb filters and refractive index sensors based on fiber loop mirror with inline high birefringence microfiber,” Opt. Lett. 38(21), 4277–4280 (2013).
[CrossRef] [PubMed]

K. Y. Song, H. J. Yoon, “Observation of narrowband intrinsic spectra of Brillouin dynamic gratings,” Opt. Lett. 35(17), 2958–2960 (2010).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Y. Song, K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[CrossRef] [PubMed]

J. Magné, P. Giaccari, S. LaRochelle, J. Azaña, L. R. Chen, “All-fiber comb filter with tunable free spectral range,” Opt. Lett. 30(16), 2062–2064 (2005).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[CrossRef] [PubMed]

Sci. Rep. (1)

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013).
[CrossRef] [PubMed]

Science (1)

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Other (1)

J. Guo, N. Zhu, N. Huang, Y. Deng, W. Li, X. Wang, J. Liu, and M. Li, “Proposal of Sampled Brillouin Dynamic Gratings,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (2013), paper AF2D.14.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a). Principle to generate SBDG in a PMF using the ordinary SBS process. One pulse 1 and one counter-propagating periodic pulse trains 2 at distinct frequencies v1 and v2 (v2>v1) are used as Brillouin pumps with a frequency difference equal to the Brillouin shift. (b). Pump1 and pump2 in a PMF along one fixed polarization axis, and the scattering from the grating in the other orthogonal polarization axis at a shifted frequency Δv.

Fig. 2
Fig. 2

Schematic diagram of refractive index modulation of the proposed SBDG, Δn(x) is the refractive index modulation along the PMF, S(x) is the sampling function, and f(x) is the refractive index modulation after sampling.

Fig. 3
Fig. 3

(a) Numerically simulated reflection spectra of SBDG with 3-dB bandwidth and wavelength spacing of the SBDG are 0.0001 nm (12.5 MHz) and 0.0016 nm (200 MHz), respectively. (b) The spectra at the wavelengths of 1549.9993 nm with the maximum peak reflectivity of −1.65 dB.

Fig. 4
Fig. 4

(a) Numerically simulated reflection spectra of SBDG with 3-dB bandwidth and wavelength spacing of the SBDG are 0.008nm (1GHz) and 0.4nm (50GHz), respectively. (b) The spectra at the wavelengths of 1549.9667 nm with the maximum peak reflectivity of −22.5dB.

Fig. 5
Fig. 5

(a) Reflection spectra versus wavelength for Gaussian Apodized SBDG with 3-dB bandwidth and wavelength spacing of the SBDG are 0.008nm (1GHz) and 0.4nm (50GHz), respectively. (b) The spectra at the wavelengths of 1549.9682 nm with the maximum peak reflectivity of −13.23 dB

Fig. 6
Fig. 6

(a) Reflection spectra versus wavelength for Sinc Apodized SBDG with 3-dB bandwidth and wavelength spacing of the SBDG are 0.008nm (1GHz) and 0.4nm (50GHz), respectively. (b) The spectra at the wavelengths of 1549.9667 nm with the maximum peak reflectivity of −22.85 dB

Fig. 7
Fig. 7

Reflection spectra versus wavelength for a SCBDG with the wavelength spacing of the SBDG is 0.008nm (1 GHz), respectively, when Sinc-shaped chirped pump pulses as input pulse and the chirp coefficient of pulse pump 1 and pump 2 are −1 nm/cm.

Fig. 8
Fig. 8

(a) Reflection spectra versus wavelength for SCBDG in one channel optical spectra from Fig. 7, the 3-dB bandwidth is 300 MHz. (b) Group delay versus wavelength and its dispersion value is 342 ns/nm.

Fig. 9
Fig. 9

(a) Reflection spectra versus wavelength for SCBDG in one channel optical spectra from Fig. 7. (b) Group delay versus wavelength and its dispersion value is close to zero.

Fig. 10
Fig. 10

(a) Reflection spectra with the time, and the black, blue and red lines represent the different time 15ns, 24 ns and 45 ns. (b) Reflection spectra in the enlarged portion of the middle of a channel.

Tables (1)

Tables Icon

Table 1 Simulation Parameters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δn( z )=( Δ n 0 ( z )+Δ n 1 ( z )cos( 2πz Λ 0 +ϕ( z )) )a(z) i=0 N [ rect( z N*Ls )δ( ziP ) ] ,
r( λ )=FT[ Δn( z ) ]=FT[ S( z ) ]FT[ δn( z ) ],
Δn= γ e 2 2π τ p n eff P 1 P 2 n 0 ρ 0 v B λ p 2 c 0 A eff ,
P= c fn ,T= L grating P ,N= L P ,
Δλ= λ B 2 2 n eff p ,
δλ= λ 2 2n L grating ,
E(t)= E 0 exp( 4ln2 t 2 τ FWHM 2 )exp(i ω 0 t),
E(t)= E 0 sinc(πt)exp(i ω 0 t),
Λ( z )= Λ 0 ( 1+Cz ),
E 1 ( t )= A 10 exp( 1+i C 1 2 t 2 τ 1 2 )exp(j ω 0 t), E 2 ( t )= A 20 exp( 1+i C 2 2 t 2 τ 2 2 )exp(j( ω 0 Ω B )t)
ω 1 = ω 0 + C 1 τ 1 2 t, ω 2 = ω 0 Ω B + C 2 τ 2 2 t
1 2 dϕ dz = 4π n eff z λ B 2 d λ B dz ,
| E(t) | 2 = E 0 2 exp(2δt)= E 0 2 exp( t τ ph ),

Metrics