Abstract

Aimed for generating high-average power ultraviolet (UV) lasers via third-harmonic generation (THG) consisting of frequency doubling and tripling stages, we numerically and experimentally demonstrate a novel frequency tripling scheme capable of supporting temperature-insensitive phase-matching (PM). Two cascaded tripling crystals, with opposite signs of the temperature derivation of phase-mismatch, are proposed and theoretically studied for improving the temperature-acceptance of PM. The proof-of-principle tripling experiment using two crystals of LBO and BBO shows that the temperature acceptance can be ~1.5 times larger than that of using a single tripling crystal. In addition, the phase shift caused by air dispersion, along with its influence on the temperature-insensitive PM, are also discussed. To illustrate the potential applications of proposed two-crystal tripling design in the high-average-power regime, full numerical simulations for the tripling process, are implemented based on the realistic crystals. The demonstrated two-crystal tripling scheme may provide a promising route to high-average-power THG in the UV region.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kitano, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, T. Sasaki, “Efficient 355-nm generation in CsB3O5 crystal,” Opt. Lett. 28(4), 263–265 (2003).
    [CrossRef] [PubMed]
  2. T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. Rep. 30(1–2), 1–54 (2000).
    [CrossRef]
  3. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
    [CrossRef]
  4. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31(9), 1247–1249 (2006).
    [CrossRef] [PubMed]
  5. C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter, “700 W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate,” Proc. SPIE 7578, 75780A (2010).
    [CrossRef]
  6. D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
    [CrossRef]
  7. Y. K. Yap, K. Deki, N. Kitatochi, Y. Mori, T. Sasaki, “Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation,” Opt. Lett. 23(13), 1016–1018 (1998).
    [CrossRef] [PubMed]
  8. N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
    [CrossRef]
  9. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008).
    [CrossRef]
  10. H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).
    [CrossRef]
  11. A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/snlo .
  12. H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Two-crystal design and numerical simulations for high-average-power second-harmonic generation,” Chin. Phys. Lett. 30(1), 014208 (2013).
    [CrossRef]
  13. B. Edlén, “The refractive index of air,” Metrologia 2(2), 71–80 (1966).
    [CrossRef]
  14. J. M. Yarborough, J. Falk, C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
    [CrossRef]
  15. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
    [CrossRef]
  16. M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [CrossRef]
  17. D. N. Nikogosyan, “Lithium triborate (LBO) - A review of its properties and applications,” Appl. Phys. A Mater. Sci. Process. 58(3), 181–190 (1994).
    [CrossRef]
  18. D. Li, Z. Ma, R. Haas, A. Schell, J. Simon, R. Diart, P. Shi, P. Hu, P. Loosen, K. Du, “Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO,” Opt. Lett. 32(10), 1272–1274 (2007).
    [CrossRef] [PubMed]
  19. Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
    [CrossRef] [PubMed]
  20. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14(2), 460–474 (1997).
    [CrossRef]

2013

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Two-crystal design and numerical simulations for high-average-power second-harmonic generation,” Chin. Phys. Lett. 30(1), 014208 (2013).
[CrossRef]

2012

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).
[CrossRef]

2010

C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter, “700 W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate,” Proc. SPIE 7578, 75780A (2010).
[CrossRef]

2009

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
[CrossRef]

2008

2007

2006

2003

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

H. Kitano, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, T. Sasaki, “Efficient 355-nm generation in CsB3O5 crystal,” Opt. Lett. 28(4), 263–265 (2003).
[CrossRef] [PubMed]

2000

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. Rep. 30(1–2), 1–54 (2000).
[CrossRef]

1998

1997

D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14(2), 460–474 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

1996

1994

D. N. Nikogosyan, “Lithium triborate (LBO) - A review of its properties and applications,” Appl. Phys. A Mater. Sci. Process. 58(3), 181–190 (1994).
[CrossRef]

1990

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

1987

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
[CrossRef]

1971

J. M. Yarborough, J. Falk, C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

1966

B. Edlén, “The refractive index of air,” Metrologia 2(2), 71–80 (1966).
[CrossRef]

Alford, W. J.

Allee, E. S.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
[CrossRef]

Ando, M.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

Armstrong, D. J.

Armstrong, J.

Barty, C.

Bayramian, A.

Beer, G.

Bowers, M. S.

Caird, J.

Campbell, R.

Chai, B.

Chen, Y. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Cheung, E. C.

Cross, R.

Deki, K.

Diart, R.

Du, K.

Dudley, D. R.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
[CrossRef]

Ebbers, C.

Edlén, B.

B. Edlén, “The refractive index of air,” Metrologia 2(2), 71–80 (1966).
[CrossRef]

Eimerl, D.

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
[CrossRef]

Epp, P.

Erlandson, A.

Falk, J.

J. M. Yarborough, J. Falk, C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

Fei, Y.

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Freitas, B.

Goodno, G. D.

Haas, R.

Hitz, C. B.

J. M. Yarborough, J. Falk, C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

Hodgson, N.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
[CrossRef]

Howland, D.

Hu, P.

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Inagaki, M.

Injeyan, H.

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Kamimura, T.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. Rep. 30(1–2), 1–54 (2000).
[CrossRef]

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Kato, K.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

Kent, R.

Killi, A.

C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter, “700 W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate,” Proc. SPIE 7578, 75780A (2010).
[CrossRef]

Kitano, H.

Kitatochi, N.

Komine, H.

Li, D.

Long, W.

Loosen, P.

Ma, Z.

McClellan, M.

McNaught, S. J.

Mehl, O.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
[CrossRef]

Menapace, J.

Molander, W.

Mori, Y.

H. Kitano, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, T. Sasaki, “Efficient 355-nm generation in CsB3O5 crystal,” Opt. Lett. 28(4), 263–265 (2003).
[CrossRef] [PubMed]

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. Rep. 30(1–2), 1–54 (2000).
[CrossRef]

Y. K. Yap, K. Deki, N. Kitatochi, Y. Mori, T. Sasaki, “Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation,” Opt. Lett. 23(13), 1016–1018 (1998).
[CrossRef] [PubMed]

Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
[CrossRef] [PubMed]

Nakajima, S.

Nikogosyan, D. N.

D. N. Nikogosyan, “Lithium triborate (LBO) - A review of its properties and applications,” Appl. Phys. A Mater. Sci. Process. 58(3), 181–190 (1994).
[CrossRef]

Pang, H. Y.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
[CrossRef]

Qian, L. J.

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Two-crystal design and numerical simulations for high-average-power second-harmonic generation,” Chin. Phys. Lett. 30(1), 014208 (2013).
[CrossRef]

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).
[CrossRef]

Raymond, T. D.

Redmond, S.

Sasaki, T.

H. Kitano, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, T. Sasaki, “Efficient 355-nm generation in CsB3O5 crystal,” Opt. Lett. 28(4), 263–265 (2003).
[CrossRef] [PubMed]

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. Rep. 30(1–2), 1–54 (2000).
[CrossRef]

Y. K. Yap, K. Deki, N. Kitatochi, Y. Mori, T. Sasaki, “Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation,” Opt. Lett. 23(13), 1016–1018 (1998).
[CrossRef] [PubMed]

Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
[CrossRef] [PubMed]

Sato, K.

Schaffers, K.

Schell, A.

Schüle, W.

C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter, “700 W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate,” Proc. SPIE 7578, 75780A (2010).
[CrossRef]

Shi, P.

Siders, C.

Simon, J.

Simpson, R.

Smith, A. V.

Sollee, J.

Stolzenburg, C.

C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter, “700 W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate,” Proc. SPIE 7578, 75780A (2010).
[CrossRef]

Sutter, D.

C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter, “700 W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate,” Proc. SPIE 7578, 75780A (2010).
[CrossRef]

Sutton, S.

Suzuki, K.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

Takaoka, E.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

Tassano, J.

Telford, S.

Umemura, N.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

Ushiyama, N.

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Wang, G. Y.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
[CrossRef]

Wang, S. C.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Weber, M.

Weiss, S. B.

Yap, Y. K.

Yarborough, J. M.

J. M. Yarborough, J. Falk, C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

Yoshimura, M.

H. Kitano, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, T. Sasaki, “Efficient 355-nm generation in CsB3O5 crystal,” Opt. Lett. 28(4), 263–265 (2003).
[CrossRef] [PubMed]

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. Rep. 30(1–2), 1–54 (2000).
[CrossRef]

Yuan, P.

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Two-crystal design and numerical simulations for high-average-power second-harmonic generation,” Chin. Phys. Lett. 30(1), 014208 (2013).
[CrossRef]

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).
[CrossRef]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Zawischa, I.

C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter, “700 W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate,” Proc. SPIE 7578, 75780A (2010).
[CrossRef]

Zhong, H. Z.

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Two-crystal design and numerical simulations for high-average-power second-harmonic generation,” Chin. Phys. Lett. 30(1), 014208 (2013).
[CrossRef]

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).
[CrossRef]

Zhu, H. Y.

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Two-crystal design and numerical simulations for high-average-power second-harmonic generation,” Chin. Phys. Lett. 30(1), 014208 (2013).
[CrossRef]

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).
[CrossRef]

Appl. Phys. A Mater. Sci. Process.

D. N. Nikogosyan, “Lithium triborate (LBO) - A review of its properties and applications,” Appl. Phys. A Mater. Sci. Process. 58(3), 181–190 (1994).
[CrossRef]

Appl. Phys. Lett.

J. M. Yarborough, J. Falk, C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Chin. Phys. Lett.

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Two-crystal design and numerical simulations for high-average-power second-harmonic generation,” Chin. Phys. Lett. 30(1), 014208 (2013).
[CrossRef]

IEEE J. Quantum Electron.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, T. Sasaki, “Temperature-insensitive second-harmonic generation at 0.5321 μm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[CrossRef]

Laser Phys. Lett.

H. Z. Zhong, P. Yuan, H. Y. Zhu, L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).
[CrossRef]

Mater. Sci. Eng. Rep.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. Rep. 30(1–2), 1–54 (2000).
[CrossRef]

Metrologia

B. Edlén, “The refractive index of air,” Metrologia 2(2), 71–80 (1966).
[CrossRef]

Opt. Lett.

Proc. SPIE

C. Stolzenburg, W. Schüle, I. Zawischa, A. Killi, D. Sutter, “700 W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate,” Proc. SPIE 7578, 75780A (2010).
[CrossRef]

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, N. Hodgson, “Q-switched diode pumped Nd: YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm,” Proc. SPIE 7193, 71930Z (2009).
[CrossRef]

Other

A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/snlo .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics