Abstract

Single-photon avalanche diode (SPAD) imagers typically have a relatively low fill factor, i.e. a low proportion of the pixel’s surface is light sensitive, due to in-pixel circuitry. We present a microlens array fabricated on a 128×128 single-photon avalanche diode (SPAD) imager to enhance its sensitivity. The benefits and limitations of these light concentrators are studied for low light imaging applications. We present a new simulation software that can be used to simulate microlenses’ performance under different conditions and a new non-destructive contact-less method to estimate the height of the microlenses. Results of experiments and simulations are in good agreement, indicating that a gain >10 can be achieved for this particular sensor.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
    [CrossRef]
  2. E. Charbon, S. Donati, “Spad sensors come of age,” Opt. Photon. News 21, 34–41 (2010).
    [CrossRef]
  3. J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).
  4. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
    [CrossRef] [PubMed]
  5. J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).
  6. S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
    [CrossRef]
  7. Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).
  8. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).
  9. L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).
  10. C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
    [CrossRef]
  11. M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
    [CrossRef]
  12. S. Donati, G. Martini, M. Norgia, “Microconcentrators to recover fill-factor inimage photodetectors with pixel on-boardprocessing circuits,” Opt. Express 15, 18066–18075 (2007).
    [CrossRef] [PubMed]
  13. S. Donati, G. Martini, E. Randone, “Improving photodetector performance by means of microoptics concentrators,” J. Lightwave Technol. 29, 661–665 (2011).
    [CrossRef]
  14. C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
    [CrossRef]

2013 (1)

S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
[CrossRef]

2011 (1)

2010 (2)

2009 (1)

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

2008 (1)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

2007 (1)

2003 (1)

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

1992 (1)

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Arlt, J.

Besse, P. A.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Blacksberg, J.

Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).

Borghetti, F.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Buts, A.

Charbon, E.

S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
[CrossRef]

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

E. Charbon, S. Donati, “Spad sensors come of age,” Opt. Photon. News 21, 34–41 (2010).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Deguchi, M.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Donati, S.

Favi, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

Fishburn, M. W.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Gosch, M.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Hamamoto, T.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Henderson, R.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Henderson, R. K.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Izumi, A.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Kluter, T.

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

Lasser, T.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Li, D.-U.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Mandai, S.

S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
[CrossRef]

Martini, G.

Maruyama, T.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Maruyama, Y.

Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Massari, N.

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Mata Pavia, J.

J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).

Meijlink, J. R.

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Monnier, F.

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

Norgia, M.

Pancheri, L.

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Popovic, R.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Randone, E.

Richardson, J.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Rigler, R.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Rochas, A.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Schaart, D.

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Seifert, S.

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Serov, A.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Stoppa, D.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Veerappan, C.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Walker, R.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Wolf, M.

J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).

Yamasaki, F.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

IEEE J. Solid-State Circuits (2)

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

IEEE Trans. Consum. Electron. (1)

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

J. Instrum. (1)

S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Photon. News (1)

E. Charbon, S. Donati, “Spad sensors come of age,” Opt. Photon. News 21, 34–41 (2010).
[CrossRef]

Other (5)

J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).

Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics