Abstract

Single-photon avalanche diode (SPAD) imagers typically have a relatively low fill factor, i.e. a low proportion of the pixel’s surface is light sensitive, due to in-pixel circuitry. We present a microlens array fabricated on a 128×128 single-photon avalanche diode (SPAD) imager to enhance its sensitivity. The benefits and limitations of these light concentrators are studied for low light imaging applications. We present a new simulation software that can be used to simulate microlenses’ performance under different conditions and a new non-destructive contact-less method to estimate the height of the microlenses. Results of experiments and simulations are in good agreement, indicating that a gain >10 can be achieved for this particular sensor.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
    [CrossRef]
  2. E. Charbon, S. Donati, “Spad sensors come of age,” Opt. Photon. News 21, 34–41 (2010).
    [CrossRef]
  3. J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).
  4. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
    [CrossRef] [PubMed]
  5. J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).
  6. S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
    [CrossRef]
  7. Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).
  8. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).
  9. L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).
  10. C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
    [CrossRef]
  11. M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
    [CrossRef]
  12. S. Donati, G. Martini, M. Norgia, “Microconcentrators to recover fill-factor inimage photodetectors with pixel on-boardprocessing circuits,” Opt. Express 15, 18066–18075 (2007).
    [CrossRef] [PubMed]
  13. S. Donati, G. Martini, E. Randone, “Improving photodetector performance by means of microoptics concentrators,” J. Lightwave Technol. 29, 661–665 (2011).
    [CrossRef]
  14. C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
    [CrossRef]

2013 (1)

S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
[CrossRef]

2011 (1)

2010 (2)

2009 (1)

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

2008 (1)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

2007 (1)

2003 (1)

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

1992 (1)

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Arlt, J.

Besse, P. A.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Blacksberg, J.

Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).

Borghetti, F.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Buts, A.

Charbon, E.

S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
[CrossRef]

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

E. Charbon, S. Donati, “Spad sensors come of age,” Opt. Photon. News 21, 34–41 (2010).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).

Deguchi, M.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Donati, S.

Favi, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

Fishburn, M. W.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Gosch, M.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Hamamoto, T.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Henderson, R.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Henderson, R. K.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Izumi, A.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Kluter, T.

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

Lasser, T.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Li, D.-U.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Mandai, S.

S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
[CrossRef]

Martini, G.

Maruyama, T.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

Maruyama, Y.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).

Massari, N.

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Mata Pavia, J.

J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).

Meijlink, J. R.

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Monnier, F.

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

Norgia, M.

Pancheri, L.

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Popovic, R.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Randone, E.

Richardson, J.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Rigler, R.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Rochas, A.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Schaart, D.

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Seifert, S.

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Serov, A.

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

Stoppa, D.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Veerappan, C.

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Walker, R.

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32×32 0.13μ cmos low dark-count single-photon avalanche diode array,” Opt. Express 18, 10257–10269 (2010).
[CrossRef] [PubMed]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

Wolf, M.

J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).

Yamasaki, F.

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

IEEE J. Solid-State Circuits (2)

C. Niclass, C. Favi, T. Kluter, F. Monnier, E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43, 2977–2989 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. Popovic, T. Lasser, R. Rigler, “First fully integrated 2-d array of single-photon detectors in standard cmos technology,” IEEE Photon. Technol. Lett., 15, 963–965 (2003).
[CrossRef]

IEEE Trans. Consum. Electron. (1)

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, A. Izumi, “Microlens design using simulation program for ccd image sensor,” IEEE Trans. Consum. Electron. 38, 583–589 (1992).
[CrossRef]

J. Instrum. (1)

S. Mandai, E. Charbon, “Timing optimization of a h-tree based digital silicon photomultiplier,” J. Instrum. 8, P09016 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Photon. News (1)

E. Charbon, S. Donati, “Spad sensors come of age,” Opt. Photon. News 21, 34–41 (2010).
[CrossRef]

Other (5)

J. Mata Pavia, E. Charbon, M. Wolf, “3D near-infrared imaging based on a single-photon avalanche diode array sensor,” Proc. SPIE 8088, Diffuse Optical Imaging III, 808811 (2011).

J. R. Meijlink, C. Veerappan, S. Seifert, D. Stoppa, R. Henderson, E. Charbon, D. Schaart, “First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling timestamping of up to 20,480 single photons,” IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., pp. 2254–2257 (2011).

Y. Maruyama, J. Blacksberg, E. Charbon, “A 1024×8 700ps time-gated spad line sensor for laser raman spectroscopy and libs in space and rover-based planetary exploration,”Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf., pp. 110–111 (2013).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,”Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., pp. 312–314 (2011).

L. Pancheri, N. Massari, F. Borghetti, D. Stoppa, “A 32×32 spad pixel array with nanosecond gating and analog readout,” Proc. Intl. Image Sensor Workshop, R40 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(top) Detail of array of microlenses mounted on top of nine SPAD pixels. The height of the microlenses H can be adjusted for each sample. (bottom left) Top view of a single microlens with isolines that depict its shape. In this picture it can be seen that the base of the microlens is square, in other words the radius of curvature of the microlenses varies with the azimuthal angle. (bottom right) Cross-section across the dotted line of the microlens with geometrical details. The active area of the pixel is depicted in red.

Fig. 2
Fig. 2

(left) Scanning electron microscope image of the microlens array fabricated on the CMOS SPAD array. (right) SPAD array chip with microlenses bonded in a PGA package (right).

Fig. 3
Fig. 3

(left) Ray tracing of light going through a microlens and then reaching the image plane, the circle on the right denotes the photosensitive area of the pixel. Although an array of nine microlenses and nine detectors are simulated, only one microlens and detector are depicted in this figure for clarity purposes. (right) Light intensity profile in the image plane. The outer white straight lines defines the limits of the pixel and the inner white circle the pixel’s photosensitive area.

Fig. 4
Fig. 4

SEM picture of the cross-section of one of the chips with microlenses. In the array’s photosensitive area, marked in red, the upper layers of the microchip have been etched away to increase the performance of the sensor. Metal 1 through 4 are also visible in the cross-section, covered by 2μm of SiO2 passivation and a polyimide layer. The height of the microlenses is marked in green. For this particular sample the height of the microlenses was 51μm.

Fig. 5
Fig. 5

(left) Simulated concentration factors for different heights of the microlenses. (right) Depending on the application’s f-number, the optimal height of the microlenses varies.

Fig. 6
Fig. 6

Concentration factor variations for small height changes.

Fig. 7
Fig. 7

Concentration factor measurements and simulations of a sensor with 30μm (left) and 70μm (right) height microlenses.

Fig. 8
Fig. 8

Image crops obtained from SPAD sensors with 30μm height microlenses and without microlenses at different f-numbers. The concentration factor obtained with the microlenses increases at higher f-numbers, and so does its standard deviation.

Fig. 9
Fig. 9

Light intensity profile in the image plane for f/2 and f/11 when the focal spot is perfectly centered and in case of focal spot decentering due to microlenes misalignment or telecentric error. For high f-numbers a small focal spot decentering will dramatically reduce the irradiance in certain parts of the pixel active area (enclosed in a white circle). For f/2 the concentration factor dropped from 4.3 to 4.0 when the misalignment was introduced, whereas for f/11 the concentration factor changed from 8.1 to 6.8. In these simulations microlenses with 30μm were used and the focal spot was decentered 1μm in the X and Y directions.

Fig. 10
Fig. 10

Light intensity dependence versus angle of incidence for different simulated microlenses heights and measurements obtained from a sensor with 30μm height microlenses.

Fig. 11
Fig. 11

Secondary peak position variation with respect the microlenses height.

Tables (1)

Tables Icon

Table 1 Concentration factor and its standard deviation for different f-numbers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C F = E 0 / E i ,

Metrics