Abstract

We introduce the concept of mechanically stretchable optical waveguides. The technology to fabricate these waveguides is based on a cost-efficient replication method, employing commercially available polydimethylsiloxane (PDMS) materials. Furthermore, VCSELs (λ = 850 nm) and photodiodes, embedded in a flexible package, were integrated with the waveguides to obtain a truly bendable, stretchable and mechanically deformable optical link. Since these sources and detectors were integrated, it was possible to determine the influence of bending and stretching on the waveguide performance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Lumelsky, M. Shur, S. Wagner, “Sensitive Skin Workshop, Arlington, Virginia,” NSF, DARPA Sensitive Skin Workshop Report pp. 1–129 (1999).
  2. S. Cheng, Z. Wu, “A microfluidic, reversibly stretchable, large-area wireless strain sensor,” Adv. Funct. Mater. 21, 2282–2290 (2011).
    [CrossRef]
  3. Nokia, “The Morph Concept, “ https://research.nokia.com/morph (accessed 2013).
  4. R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22, 015002 (2012).
    [CrossRef]
  5. F. Bossuyt, T. Vervust, J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Trans. Comp. Pack. Man. 3, 229–235 (2013).
  6. T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004).
    [CrossRef]
  7. J. A. Rogers, T. Someya, Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
    [CrossRef] [PubMed]
  8. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
    [CrossRef] [PubMed]
  9. D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012).
    [CrossRef]
  10. D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
    [CrossRef] [PubMed]
  11. B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).
  12. J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
    [CrossRef]
  13. M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.
  14. D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, “Deep etching of biocompatible silicone rubber,” Microelectron. Eng. 83, 1178–1181 (2006).
    [CrossRef]
  15. S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
    [CrossRef]
  16. B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
    [CrossRef] [PubMed]
  17. Y. Xia, G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
    [CrossRef]
  18. D. A. Chang-Yen, R. K. Eich, B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23, 2088 (2005).
    [CrossRef]
  19. J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sensor. Actuat. B-Chem. 134, 532–538 (2008).
    [CrossRef]
  20. S. Kopetz, D. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
    [CrossRef]
  21. K. S. Ryu, X. Wang, K. Shaikh, C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13, 568–575 (2004).
    [CrossRef]
  22. J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17, 11739–11746 (2009).
    [CrossRef] [PubMed]
  23. V. Lien, Y. Berdichevsky, Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16, 1525–1527 (2004).
    [CrossRef]
  24. V. Lien, K. Zhao, Y. Berdichevsky, Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron. 11, 827–834 (2005).
    [CrossRef]
  25. N. Bamiedakis, R. Penty, I. White, “Compact multimode polymer waveguide bends for board-level optical interconnects,” J. Lightwave Technol. 31, 2370–2375 (2013).
    [CrossRef]
  26. B. Riegler, R. Thomaier, “Index matching silicone for optoelectronic applications,” in New Developments in Optomechanics, A. E. Hatheway, eds., Proc. SPIE 6665, 666508 (2007).
    [CrossRef]
  27. S. Bhattacharya, A. Datta, J. Berg, S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
    [CrossRef]
  28. B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012).
    [CrossRef]

2013

F. Bossuyt, T. Vervust, J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Trans. Comp. Pack. Man. 3, 229–235 (2013).

N. Bamiedakis, R. Penty, I. White, “Compact multimode polymer waveguide bends for board-level optical interconnects,” J. Lightwave Technol. 31, 2370–2375 (2013).
[CrossRef]

2012

R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22, 015002 (2012).
[CrossRef]

D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012).
[CrossRef]

2011

S. Cheng, Z. Wu, “A microfluidic, reversibly stretchable, large-area wireless strain sensor,” Adv. Funct. Mater. 21, 2282–2290 (2011).
[CrossRef]

2010

J. A. Rogers, T. Someya, Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef] [PubMed]

2009

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17, 11739–11746 (2009).
[CrossRef] [PubMed]

2008

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sensor. Actuat. B-Chem. 134, 532–538 (2008).
[CrossRef]

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
[CrossRef] [PubMed]

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

2007

S. Kopetz, D. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

2006

D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, “Deep etching of biocompatible silicone rubber,” Microelectron. Eng. 83, 1178–1181 (2006).
[CrossRef]

2005

D. A. Chang-Yen, R. K. Eich, B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23, 2088 (2005).
[CrossRef]

B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
[CrossRef] [PubMed]

S. Bhattacharya, A. Datta, J. Berg, S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

V. Lien, K. Zhao, Y. Berdichevsky, Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron. 11, 827–834 (2005).
[CrossRef]

2004

K. S. Ryu, X. Wang, K. Shaikh, C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13, 568–575 (2004).
[CrossRef]

V. Lien, Y. Berdichevsky, Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16, 1525–1527 (2004).
[CrossRef]

T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004).
[CrossRef]

2002

J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
[CrossRef]

1998

Y. Xia, G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Ahn, J.-H.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Aida, T.

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
[CrossRef] [PubMed]

Bamiedakis, N.

Berdichevsky, Y.

V. Lien, K. Zhao, Y. Berdichevsky, Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron. 11, 827–834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16, 1525–1527 (2004).
[CrossRef]

Berg, J.

S. Bhattacharya, A. Datta, J. Berg, S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

Berghmans, F.

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

Bhattacharya, S.

S. Bhattacharya, A. Datta, J. Berg, S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

Bosman, E.

B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012).
[CrossRef]

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

Bossuyt, F.

F. Bossuyt, T. Vervust, J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Trans. Comp. Pack. Man. 3, 229–235 (2013).

R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22, 015002 (2012).
[CrossRef]

Cai, D.

S. Kopetz, D. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

Chang-Yen, D. A.

Chen, M.

D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012).
[CrossRef]

Chen, R.

D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012).
[CrossRef]

Cheng, S.

S. Cheng, Z. Wu, “A microfluidic, reversibly stretchable, large-area wireless strain sensor,” Adv. Funct. Mater. 21, 2282–2290 (2011).
[CrossRef]

Choi, W. M.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Cory, T. J.

B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
[CrossRef] [PubMed]

Currie, J.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
[CrossRef]

Cuypers, D.

R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22, 015002 (2012).
[CrossRef]

Datta, A.

S. Bhattacharya, A. Datta, J. Berg, S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

Domanski, K.

D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, “Deep etching of biocompatible silicone rubber,” Microelectron. Eng. 83, 1178–1181 (2006).
[CrossRef]

Eich, R. K.

Fogarty, B. A.

B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
[CrossRef] [PubMed]

Fukushima, T.

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
[CrossRef] [PubMed]

Gale, B. K.

Gangopadhyay, S.

S. Bhattacharya, A. Datta, J. Berg, S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

Garra, J.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
[CrossRef]

Geernaert, T.

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

Go, J. S.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

Grabiec, P.

D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, “Deep etching of biocompatible silicone rubber,” Microelectron. Eng. 83, 1178–1181 (2006).
[CrossRef]

Hata, K.

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
[CrossRef] [PubMed]

Henle, C.

M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.

Heppert, K. E.

B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
[CrossRef] [PubMed]

Huang, Y.

J. A. Rogers, T. Someya, Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef] [PubMed]

Huang, Y. Y.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Huang, Z.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004).
[CrossRef]

Hulbutta, K. R.

B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
[CrossRef] [PubMed]

Hwang, K.-Y.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

Hwang, S. J.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

Jung, P. G.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

Kalathimekkad, S.

B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012).
[CrossRef]

Kee, J. S.

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17, 11739–11746 (2009).
[CrossRef] [PubMed]

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sensor. Actuat. B-Chem. 134, 532–538 (2008).
[CrossRef]

Kim, D.-H.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Kim, H.-S.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Kim, J.-H.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

Kim, T.-H.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Ko, J. S.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

Kopetz, S.

S. Kopetz, D. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

Lacour, S. P.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004).
[CrossRef]

Lee, S. M.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

Li, T.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004).
[CrossRef]

Lien, V.

V. Lien, K. Zhao, Y. Berdichevsky, Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron. 11, 827–834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16, 1525–1527 (2004).
[CrossRef]

Liu, C.

K. S. Ryu, X. Wang, K. Shaikh, C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13, 568–575 (2004).
[CrossRef]

Liu, Z.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Lo, Y.-H.

V. Lien, K. Zhao, Y. Berdichevsky, Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron. 11, 827–834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16, 1525–1527 (2004).
[CrossRef]

Long, T.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
[CrossRef]

Lovell, N.

M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.

Lu, C.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Lumelsky, V.

V. Lumelsky, M. Shur, S. Wagner, “Sensitive Skin Workshop, Arlington, Virginia,” NSF, DARPA Sensitive Skin Workshop Report pp. 1–129 (1999).

Lunte, S. M.

B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
[CrossRef] [PubMed]

Martin, R. S.

B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
[CrossRef] [PubMed]

Missinne, J.

B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012).
[CrossRef]

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

Neuzil, P.

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17, 11739–11746 (2009).
[CrossRef] [PubMed]

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sensor. Actuat. B-Chem. 134, 532–538 (2008).
[CrossRef]

Neyer, A.

S. Kopetz, D. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

Noguchi, Y.

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
[CrossRef] [PubMed]

Oh, D. J.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

Ordonez, J.

M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.

Paranjape, M.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
[CrossRef]

Penty, R.

Pham, D.

D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012).
[CrossRef]

Poenar, D. P.

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17, 11739–11746 (2009).
[CrossRef] [PubMed]

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sensor. Actuat. B-Chem. 134, 532–538 (2008).
[CrossRef]

Prokaryn, P.

D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, “Deep etching of biocompatible silicone rubber,” Microelectron. Eng. 83, 1178–1181 (2006).
[CrossRef]

Rabe, E.

S. Kopetz, D. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

Riegler, B.

B. Riegler, R. Thomaier, “Index matching silicone for optoelectronic applications,” in New Developments in Optomechanics, A. E. Hatheway, eds., Proc. SPIE 6665, 666508 (2007).
[CrossRef]

Rogers, J. A.

J. A. Rogers, T. Someya, Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef] [PubMed]

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Ryu, K. S.

K. S. Ryu, X. Wang, K. Shaikh, C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13, 568–575 (2004).
[CrossRef]

Schneider, T.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
[CrossRef]

Schuettler, M.

M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.

Sekitani, T.

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
[CrossRef] [PubMed]

Shaikh, K.

K. S. Ryu, X. Wang, K. Shaikh, C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13, 568–575 (2004).
[CrossRef]

Shur, M.

V. Lumelsky, M. Shur, S. Wagner, “Sensitive Skin Workshop, Arlington, Virginia,” NSF, DARPA Sensitive Skin Workshop Report pp. 1–129 (1999).

Someya, T.

J. A. Rogers, T. Someya, Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef] [PubMed]

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
[CrossRef] [PubMed]

Song, J.

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

Stieglitz, T.

M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.

Suaning, G.

M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.

Subbaraman, H.

D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012).
[CrossRef]

Suo, Z.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004).
[CrossRef]

Szmigiel, D.

D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, “Deep etching of biocompatible silicone rubber,” Microelectron. Eng. 83, 1178–1181 (2006).
[CrossRef]

Thomaier, R.

B. Riegler, R. Thomaier, “Index matching silicone for optoelectronic applications,” in New Developments in Optomechanics, A. E. Hatheway, eds., Proc. SPIE 6665, 666508 (2007).
[CrossRef]

Van Daele, P.

B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012).
[CrossRef]

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

Van Hoe, B.

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012).
[CrossRef]

Van Steenberge, G.

B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012).
[CrossRef]

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

Vanfleteren, J.

F. Bossuyt, T. Vervust, J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Trans. Comp. Pack. Man. 3, 229–235 (2013).

R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22, 015002 (2012).
[CrossRef]

Verplancke, R.

R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22, 015002 (2012).
[CrossRef]

Vervust, T.

F. Bossuyt, T. Vervust, J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Trans. Comp. Pack. Man. 3, 229–235 (2013).

Wagner, S.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004).
[CrossRef]

V. Lumelsky, M. Shur, S. Wagner, “Sensitive Skin Workshop, Arlington, Virginia,” NSF, DARPA Sensitive Skin Workshop Report pp. 1–129 (1999).

Wang, X.

K. S. Ryu, X. Wang, K. Shaikh, C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13, 568–575 (2004).
[CrossRef]

Webb, D.

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

White, I.

White, R.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
[CrossRef]

Whitesides, G. M.

Y. Xia, G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Wu, Z.

S. Cheng, Z. Wu, “A microfluidic, reversibly stretchable, large-area wireless strain sensor,” Adv. Funct. Mater. 21, 2282–2290 (2011).
[CrossRef]

Xia, Y.

Y. Xia, G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Xu, X.

D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012).
[CrossRef]

Yobas, L.

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17, 11739–11746 (2009).
[CrossRef] [PubMed]

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sensor. Actuat. B-Chem. 134, 532–538 (2008).
[CrossRef]

Zhao, K.

V. Lien, K. Zhao, Y. Berdichevsky, Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron. 11, 827–834 (2005).
[CrossRef]

Adv. Funct. Mater.

S. Cheng, Z. Wu, “A microfluidic, reversibly stretchable, large-area wireless strain sensor,” Adv. Funct. Mater. 21, 2282–2290 (2011).
[CrossRef]

AEU-Int. J. Electron. Commun.

S. Kopetz, D. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

Analyst

B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci.

Y. Xia, G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Appl. Phys. Lett.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

V. Lien, K. Zhao, Y. Berdichevsky, Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron. 11, 827–834 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

V. Lien, Y. Berdichevsky, Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16, 1525–1527 (2004).
[CrossRef]

IEEE Trans. Comp. Pack. Man.

F. Bossuyt, T. Vervust, J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Trans. Comp. Pack. Man. 3, 229–235 (2013).

IEEE Trans. Nanotechnol.

D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012).
[CrossRef]

J. Lightwave Technol.

J. Microelectromech. Syst.

S. Bhattacharya, A. Datta, J. Berg, S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

K. S. Ryu, X. Wang, K. Shaikh, C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13, 568–575 (2004).
[CrossRef]

J. Micromech. Microeng.

S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009).
[CrossRef]

R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22, 015002 (2012).
[CrossRef]

J. Vac. Sci. Technol. A

J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002).
[CrossRef]

Microelectron. Eng.

D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, “Deep etching of biocompatible silicone rubber,” Microelectron. Eng. 83, 1178–1181 (2006).
[CrossRef]

Opt. Express

Science

D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008).
[CrossRef] [PubMed]

J. A. Rogers, T. Someya, Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef] [PubMed]

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008).
[CrossRef] [PubMed]

Sensor. Actuat. B-Chem.

J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sensor. Actuat. B-Chem. 134, 532–538 (2008).
[CrossRef]

Other

M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.

B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).

V. Lumelsky, M. Shur, S. Wagner, “Sensitive Skin Workshop, Arlington, Virginia,” NSF, DARPA Sensitive Skin Workshop Report pp. 1–129 (1999).

Nokia, “The Morph Concept, “ https://research.nokia.com/morph (accessed 2013).

B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012).
[CrossRef]

B. Riegler, R. Thomaier, “Index matching silicone for optoelectronic applications,” in New Developments in Optomechanics, A. E. Hatheway, eds., Proc. SPIE 6665, 666508 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Simplified concept of the PDMS waveguide fabrication process based on a capillary filling technique: (a) Bonding of 2 PDMS layers forming covered channels, (b) Applying a drop of liquid core material at the inlet, (c) Curing the core material once the channels are filled.

Fig. 2
Fig. 2

Razor blade cross-section of the PDMS waveguides fabricated using capillary filling.

Fig. 3
Fig. 3

Fabrication steps for integrating optoelectronic components with stretchable waveguides; the procedure is identical for integrating VCSELs or photodiodes.

Fig. 4
Fig. 4

Embedded 1×4 VCSEL array coupled to 4 PDMS waveguides using the process shown in Fig. 3. The optoelectronic component is covered by the mirror plug and can therefore not be seen.

Fig. 5
Fig. 5

Photo of the complete stretchable optical link including embedded VCSELs and photodiodes integrated with PDMS waveguides.

Fig. 6
Fig. 6

Setup for investigating the effect of bending on the waveguide losses. The part of the sample where coupling between the optoelectronic components and the waveguides is performed was immobilized to exclude effects from changing coupling conditions as much as possible.

Fig. 7
Fig. 7

Setup for investigating the effect of stretching on the waveguide losses: (a) the waveguide link mounted on the setup and (b) a close-up on the thicker PDMS protruding blocks attached on both sides allowing fixation without direct clamping on the waveguides themselves.

Fig. 8
Fig. 8

Optical power detected by the photodiode, measured for 3 waveguide links. The dashed lines represent the case without, and the solid lines with index matching PDMS applied. The dotted curve represents the emitted VCSEL power.

Fig. 9
Fig. 9

Total optical loss in the waveguide link (in dB), measured for 3 waveguide links. The dashed lines represent the case without, and the solid lines with index matching PDMS applied.

Fig. 10
Fig. 10

Additional bending losses as a function of bending radius measured for 3 different waveguide links (depicted using different colors). The 3 separate experiments per link are depicted using different line styles (solid, dashed and dotted).

Fig. 11
Fig. 11

Additional losses recorded when subjecting the waveguides to 9 cycli of 30 % elongation (8.3 s per cycle, waveguides unstretched at t=0 s). The experimental data for 3 different optical links is displayed in the 3 subplots showing link 1 to 3 from top to bottom. Within each subplot, the results for 3 different VCSEL driving currents are displayed using different line styles (solid, dashed and dotted).

Fig. 12
Fig. 12

Long-term optical link reliability testing: inter-cycle insertion loss variation of 3 optical links (data averaged over 50 cycles). These 3 optical links were present on the same substrate and therefore subjected to identical stretching conditions.

Metrics