Abstract

A Faraday isolator with compensation of thermally induced depolarization outside magnetic field was implemented for the first time on TGG ceramics. Stable isolation ratio of 38 dB in steady-state regime at a laser power of 300 W was demonstrated in experiment. Theoretical estimates show a feasibility of a device that would provide an isolation ratio higher than 30 dB up to laser power of 2kW.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36(1), 75–116 (1996).
    [CrossRef]
  2. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
    [CrossRef] [PubMed]
  3. J. Chanteloup, D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
    [CrossRef]
  4. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
    [CrossRef]
  5. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
  6. N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).
  7. K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15, 927–938 (2005).
  8. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
    [CrossRef]
  9. H. Lin, S. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
    [CrossRef]
  10. C. Chen, S. Zhou, H. Lin, Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
    [CrossRef]
  11. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [CrossRef] [PubMed]
  12. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
    [CrossRef] [PubMed]
  13. R. Yasuhara, H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [CrossRef] [PubMed]
  14. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
    [CrossRef]
  15. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
    [CrossRef]
  16. E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
    [CrossRef]
  17. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41(15), 2947–2954 (2002).
    [CrossRef] [PubMed]
  18. I. L. Snetkov, I. Mukhin, O. Palashov, E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
    [CrossRef] [PubMed]
  19. I. L. Snetkov, O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
    [CrossRef]
  20. M. A. Kagan, E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
    [CrossRef]
  21. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
    [CrossRef] [PubMed]
  22. E. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications (INTECH, 2010), Chap. 3.
  23. A. G. Vyatkin, E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307–3316 (2012).
    [CrossRef]
  24. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [CrossRef] [PubMed]
  25. W. Koechner, D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
    [CrossRef]
  26. I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K.-i. Ueda, A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013).
    [CrossRef] [PubMed]
  27. O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011).
    [CrossRef]
  28. M. A. Kagan, E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
    [CrossRef] [PubMed]

2013 (4)

2012 (3)

A. G. Vyatkin, E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307–3316 (2012).
[CrossRef]

I. L. Snetkov, O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
[CrossRef]

C. Chen, S. Zhou, H. Lin, Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[CrossRef]

2011 (5)

O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011).
[CrossRef]

H. Lin, S. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

J. Chanteloup, D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
[CrossRef]

I. L. Snetkov, I. Mukhin, O. Palashov, E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[CrossRef] [PubMed]

H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2005 (2)

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15, 927–938 (2005).

2004 (1)

2003 (1)

M. A. Kagan, E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

2002 (3)

2000 (1)

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

1999 (2)

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

1996 (1)

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36(1), 75–116 (1996).
[CrossRef]

1971 (1)

Albach, D.

J. Chanteloup, D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
[CrossRef]

Anastasiyev, A. A.

Andreev, N.

Andreev, N. F.

Azechi, H.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Bisson, J.-F.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15, 927–938 (2005).

Chanteloup, J.

J. Chanteloup, D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
[CrossRef]

Chen, C.

C. Chen, S. Zhou, H. Lin, Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[CrossRef]

Fujimoto, Y.

Fujita, H.

Furuse, H.

Habara, H.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Ievlev, I. B.

O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011).
[CrossRef]

Ikegawa, T.

Izawa, Y.

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
[CrossRef] [PubMed]

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Jitsuno, T.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Kagan, M. A.

M. A. Kagan, E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[CrossRef] [PubMed]

M. A. Kagan, E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

Kaminskii, A. A.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K.-i. Ueda, A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013).
[CrossRef] [PubMed]

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15, 927–938 (2005).

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Kan, H.

Kanabe, T.

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
[CrossRef] [PubMed]

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Katin, E. V.

O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011).
[CrossRef]

Kawakami, Y.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Kawanaka, J.

Kawashima, T.

Khazanov, E.

Khazanov, E. A.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K.-i. Ueda, A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013).
[CrossRef] [PubMed]

A. G. Vyatkin, E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307–3316 (2012).
[CrossRef]

O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011).
[CrossRef]

I. L. Snetkov, I. Mukhin, O. Palashov, E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[CrossRef] [PubMed]

M. A. Kagan, E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[CrossRef] [PubMed]

M. A. Kagan, E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41(15), 2947–2954 (2002).
[CrossRef] [PubMed]

E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
[CrossRef] [PubMed]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Kinoshita, H.

Knodo, K.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Kodama, R.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Koechner, W.

Krupke, W. F.

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36(1), 75–116 (1996).
[CrossRef]

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Kurita, T.

Lin, H.

C. Chen, S. Zhou, H. Lin, Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[CrossRef]

H. Lin, S. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

Lu, J.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Matsumoto, O.

Matsuo, S.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Mehl, O.

Mikami, K.

Mima, K.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Mironov, E. A.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

Miyaji, E.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Miyamoto, M.

Miyanaga, N.

Morio, N.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Motokoshi, S.

Mukhin, I.

Nagata, Y.

Nakatsuka, M.

Nozawa, H.

Orth, C. D.

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36(1), 75–116 (1996).
[CrossRef]

Palashov, O.

Palashov, O. V.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K.-i. Ueda, A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013).
[CrossRef] [PubMed]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

I. L. Snetkov, O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
[CrossRef]

O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41(15), 2947–2954 (2002).
[CrossRef] [PubMed]

Payne, S. A.

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36(1), 75–116 (1996).
[CrossRef]

Perevezentsev, E. A.

O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011).
[CrossRef]

Poteomkin, A.

Prabhu, M.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Reitze, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Reitze, D. H.

Rice, D. K.

Sekine, T.

Sergeev, A.

Shiraga, H.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Shirakawa, A.

Silin, D. E.

Snetkov, I. L.

Takaichi, K.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15, 927–938 (2005).

Tanaka, K. A.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Teng, H.

H. Lin, S. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

Tokita, S.

Tsubakimoto, K.

H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
[CrossRef] [PubMed]

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Ueda, K.

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15, 927–938 (2005).

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Ueda, K.-i.

Voitovich, A. V.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

Voytovich, A.

Vyatkin, A. G.

Xu, G.

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Xu, J.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Yagi, H.

Yanagitani, T.

Yasuhara, R.

Yi, Q.

C. Chen, S. Zhou, H. Lin, Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[CrossRef]

Yoneda, H.

Yoshida, H.

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Zhou, S.

C. Chen, S. Zhou, H. Lin, Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[CrossRef]

H. Lin, S. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

I. L. Snetkov, O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

C. Chen, S. Zhou, H. Lin, Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

IEEE Photonics J. (1)

J. Chanteloup, D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. IV France (1)

N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).

Laser Phys. (1)

K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15, 927–938 (2005).

Nucl. Fusion (1)

C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36(1), 75–116 (1996).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. (1)

H. Lin, S. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[CrossRef]

Quantum Electron. (4)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[CrossRef]

O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011).
[CrossRef]

M. A. Kagan, E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

Other (2)

E. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications (INTECH, 2010), Chap. 3.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experiment: 1 – magneto-optical element; 2 – additional optical element; 3 – 67.5 degree quartz rotator; 4 – absorber; 5 – magnetic system; 6 – calcite wedge; 7 – fused silica wedge; 8 – Glan prism; 9 – CCD camera.

Fig. 2
Fig. 2

Integral thermally induced depolarization versus laser radiation power: red circles – TGG ceramics sample 1 in copper holder; red triangles – TGG ceramics sample 1 without copper holder; blue circles – TGG ceramics sample 2; green circles – TGG monocrystal (а); distribution of transmitted beam and its depolarized component at 8 W (b and c) and at 198 W (d and e) in TGG ceramic sample 1.

Fig. 3
Fig. 3

а) Integral thermally induced depolarization versus laser radiation power. Red circles – experiment and red curve – theory for FI without compensator; blue circles – experiment and blue curve – theory for FI with TGG ceramics compensator; magenta squares – experiment and magenta dotted curve – theory for FI with compensator of TGG [001] single crystal; green solid curve theoretic estimations for FI with TGG ceramics compensator with optimal parameters; green dotted curve theoretic estimations for FI with compensator of TGG [001] single crystal with optimal parameters. b) Time stability of the angle of Faraday rotation at laser radiation power of 300 W.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

<γ>= A 8 X 2 p 2 ,
p= Q λκ αL,
ξ eff = 1 10 ( 1+9ξ ),
Q eff = 2+3ξ 5 Q.
γ ceramic γ [111] = X ceramic 2 X [111] 2 = 9 25 ( 2+3ξ ) 2 ( 1+2ξ ) 2 .

Metrics