Abstract

We demonstrate error-free wavelength conversion of 28 GBaud 16-QAM single polarization (112 Gb/s) signals based on four-wave mixing in a dispersion engineered silicon nanowire (SNW). Wavelength conversion covering the entire C-band is achieved using a single pump. We characterize the performance of the wavelength converter subsystem through the electrical signal to noise ratio penalty as well as the bit error rate of the converted signal as a function of input signal power. Moreover, we evaluate the degradation of the optical signal to noise ratio due to wavelength conversion in the SNW.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gnauck, P. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, D. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 29(4), 373–377 (2011).
  2. X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24.
    [CrossRef]
  3. S. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
  4. G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express 20(25), 27902–27907 (2012).
    [CrossRef] [PubMed]
  5. G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
    [CrossRef]
  6. B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
    [CrossRef] [PubMed]
  7. S. T. Lu, G. Wei, and T. Kawanishi, “Experimental demonstration of wavelength conversions of optical 36 QAM and 64 QAM through FWM in HNLF,” Proc. IEEE Photonics Conference, Bellevue, WA, USA, September 2013, p.ThG1.4.
  8. X. Li, J. Yu, Z. Dong, N. Chi, “Wavelength conversion of 544-Gbit/s dual-carrier PDM-16QAM signal based on the co-polarized dual-pump scheme,” Opt. Express 20(19), 21324–21330 (2012).
    [CrossRef] [PubMed]
  9. J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  10. M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express 21(14), 16683–16689 (2013).
    [CrossRef] [PubMed]
  11. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
    [CrossRef] [PubMed]
  12. H.-S. Jeong, D. W. Kim, K. H. Kim, J.-M. Lee, “All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide,” J. Korean Phys. Soc. 62(3), 428–434 (2013).
    [CrossRef]
  13. Silicon Photonics Platform - ePIXfab: http://www.epixfab.eu (2013).
  14. IMEC News Release, http://www2.imec.be/be_en/press/imec-news/photonics2013.html (2013).
  15. L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
    [CrossRef]
  16. M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
    [CrossRef]
  17. M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
    [CrossRef]
  18. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  19. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A. Napoli, B. Lankl, “DSP for coherent single-carrier receivers,” J. Lightwave Technol. 27, 3614–3622 (2009).
  20. N. Cheng, J. C. Cartledge, “Noise transfer characteristics of cross-absorption modulation in an electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(4), 780–782 (2005).
    [CrossRef]

2013

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
[CrossRef] [PubMed]

M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express 21(14), 16683–16689 (2013).
[CrossRef] [PubMed]

H.-S. Jeong, D. W. Kim, K. H. Kim, J.-M. Lee, “All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide,” J. Korean Phys. Soc. 62(3), 428–434 (2013).
[CrossRef]

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

2012

2011

2010

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

2009

2008

2005

N. Cheng, J. C. Cartledge, “Noise transfer characteristics of cross-absorption modulation in an electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(4), 780–782 (2005).
[CrossRef]

1996

S. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).

Akella, V.

X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24.
[CrossRef]

Alfiad, M. S.

Bogris, A.

Brun, M.

Cartledge, J. C.

N. Cheng, J. C. Cartledge, “Noise transfer characteristics of cross-absorption modulation in an electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(4), 780–782 (2005).
[CrossRef]

Chagnon, M.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

Chandrasekhar, S.

Cheng, N.

N. Cheng, J. C. Cartledge, “Noise transfer characteristics of cross-absorption modulation in an electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(4), 780–782 (2005).
[CrossRef]

Chi, N.

Clausen, A.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

Contestabile, G.

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express 20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

Dong, Z.

Ettabib, M. A.

Filion, B.

Freude, W.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Galili, M.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

Gnauck, A.

Hammani, K.

Hauske, F. N.

Hu, H.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

Hvam, J. M.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Jeong, H.-S.

H.-S. Jeong, D. W. Kim, K. H. Kim, J.-M. Lee, “All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide,” J. Korean Phys. Soc. 62(3), 428–434 (2013).
[CrossRef]

Jeppesen, P.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

Ji, H.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

Jones, L.

Kapsalis, A.

Kim, D. W.

H.-S. Jeong, D. W. Kim, K. H. Kim, J.-M. Lee, “All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide,” J. Korean Phys. Soc. 62(3), 428–434 (2013).
[CrossRef]

Kim, K. H.

H.-S. Jeong, D. W. Kim, K. H. Kim, J.-M. Lee, “All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide,” J. Korean Phys. Soc. 62(3), 428–434 (2013).
[CrossRef]

Kitayama, K.

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express 20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

Koos, C.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Kuschnerov, M.

Labeye, P.

Lankl, B.

Larochelle, S.

Lee, J.-M.

H.-S. Jeong, D. W. Kim, K. H. Kim, J.-M. Lee, “All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide,” J. Korean Phys. Soc. 62(3), 428–434 (2013).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Li, X.

Liu, L.

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Liu, X.

Maruta, A.

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express 20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

Mejia, P.

X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24.
[CrossRef]

Morsy-Osman, M.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

Mulvad, H. C. H.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

Napoli, A.

Ng, W. C.

Nguyen, A. T.

Nicoletti, S.

Ou, H.

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Oxenløwe, L. K.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

Painchaud, Y.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

Paquet, C.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

Parmigiani, F.

Peckham, D.

Pelletier, M.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

Petropoulos, P.

Peucheret, C.

Piyawanno, K.

Plant, D. V.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

Poulin, M.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

Proietti, R.

X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24.
[CrossRef]

Pu, M.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Rusch, L. A.

Savory, S. J.

Spinnler, B.

Syvridis, D.

Winzer, P.

Xu, X.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

Ye, X.

X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24.
[CrossRef]

Yin, Y.

X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24.
[CrossRef]

Yoo, S. B.

S. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).

X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24.
[CrossRef]

Yoshida, Y.

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express 20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

Yu, J.

Yvind, K.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Zhu, B.

Zhuge, Q.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 996–1005 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett. 25(11), 1027–1030 (2013).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013).
[CrossRef]

N. Cheng, J. C. Cartledge, “Noise transfer characteristics of cross-absorption modulation in an electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(4), 780–782 (2005).
[CrossRef]

J. Korean Phys. Soc.

H.-S. Jeong, D. W. Kim, K. H. Kim, J.-M. Lee, “All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide,” J. Korean Phys. Soc. 62(3), 428–434 (2013).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Opt. Commun.

M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[CrossRef]

Opt. Express

Other

X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24.
[CrossRef]

S. T. Lu, G. Wei, and T. Kawanishi, “Experimental demonstration of wavelength conversions of optical 36 QAM and 64 QAM through FWM in HNLF,” Proc. IEEE Photonics Conference, Bellevue, WA, USA, September 2013, p.ThG1.4.

Silicon Photonics Platform - ePIXfab: http://www.epixfab.eu (2013).

IMEC News Release, http://www2.imec.be/be_en/press/imec-news/photonics2013.html (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Cross section of and (b) simulated dispersion curve for strip silicon waveguide structure.

Fig. 2
Fig. 2

(a) Optical spectra of the wavelength conversion; (b) FWM conversion efficiency vs. wavelength offset (of idler wavelength with respect to pump wavelength).

Fig. 3
Fig. 3

Wavelength conversion experimental setup.

Fig. 4
Fig. 4

Optical spectra of pump, 16-QAM signals (at 1547.5 nm, 1548.5 nm, 1550.5 nm, and 1552.5 nm) and converted signals; inset shows the constellation of original and converted signals at 3 nm offset.

Fig. 5
Fig. 5

BER of converted signal as a function of input signal power (wavelength 1548.5 nm).

Fig. 6
Fig. 6

Optical spectra of pump, 16-QAM signals at 1548.5 nm (with OSNR of 38.14 dB, 35.76 dB, 32.93 dB, and 30.61 dB) and converted signals measured at point C.

Fig. 7
Fig. 7

OSNR of the wavelength converted signal measured at point C as a function of the OSNR of the input data signal measured at point B. The input signal wavelength is 1548.5 nm.

Tables (1)

Tables Icon

Table 1 Summary of the Performance of the Wavelength Converter Subsystem as well as Wavelength Conversion. The Input Signal Wavelength is 1548.5 nm.

Metrics