Abstract

We demonstrate a liquid metal-based reconfigurable terahertz (THz) metamaterial device that is not only pressure driven, but also exhibits pressure memory. The discrete THz response is obtained by injecting eutectic gallium indium (EGaIn) into a microfluidic structure that is fabricated in polydimethylsiloxane (PDMS) using conventional soft lithography techniques. The shape of the injected EGaIn is mechanically stabilized by the formation of a thin oxide surface layer that allows the fluid to maintain its configuration within the microchannels despite its high intrinsic surface energy. Although the viscosity of EGaIn is twice that of water, the formation of the surface oxide layer prevents flow into a microchannel unless a critical pressure is exceeded. Using a structure in which the lateral channel dimensions vary, we progressively increase the applied pressure beyond the relevant critical pressure for each section of the device, enabling switching from one geometry to another (split ring resonator to closed ring resonator to an irregular closed ring resonator). As the geometry changes, the transmission spectrum of the device changes dramatically. When the external applied pressure is removed between device geometry changes, the liquid metal morphology remains unchanged, which can be regarded as a form of pressure memory. Once the device is fully filled with liquid metal, it can be erased through the use of mechanical pressure and exposure to acid vapors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [CrossRef] [PubMed]
  2. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [CrossRef]
  3. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [CrossRef] [PubMed]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  5. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [CrossRef]
  6. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  7. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
    [CrossRef]
  8. B. Jin, C. Zhang, S. Engelbrecht, A. Pimenov, J. Wu, Q. Xu, C. Cao, J. Chen, W. Xu, L. Kang, P. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
    [CrossRef] [PubMed]
  9. J. N. Koster, “Directional solidification and melting of eutectic GaIn,” Cryst. Res. Technol. 34(9), 1129–1140 (1999).
    [CrossRef]
  10. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
    [CrossRef]
  11. R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers,” Angew. Chem. Int. Ed. Engl. 47(1), 142–144 (2008).
    [CrossRef] [PubMed]
  12. J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
    [CrossRef]
  13. M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
    [CrossRef] [PubMed]
  14. J. Wang, S. Liu, Z. V. Vardeny, A. Nahata, “Liquid metal-based plasmonics,” Opt. Express 20(3), 2346–2353 (2012).
    [CrossRef] [PubMed]
  15. J. Wang, S. Liu, A. Nahata, “Reconfigurable plasmonic devices using liquid metals,” Opt. Express 20(11), 12119–12126 (2012).
    [CrossRef] [PubMed]
  16. S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
    [CrossRef]
  17. D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, “Stretchable organic solar cells,” Adv. Mater. 23(15), 1771–1775 (2011).
    [CrossRef] [PubMed]
  18. E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013).
    [CrossRef] [PubMed]
  19. M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011).
    [CrossRef]
  20. B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
    [CrossRef]
  21. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
    [CrossRef] [PubMed]
  22. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [CrossRef]
  23. D. Zrnic, D. S. Swatik, “On the resistivity and surface tension of the eutectic alloy of gallium and indium,” J. Less Common Met. 18(1), 67–68 (1969).
    [CrossRef]
  24. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [CrossRef] [PubMed]
  25. D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
    [CrossRef]

2013 (2)

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013).
[CrossRef] [PubMed]

2012 (3)

B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
[CrossRef]

J. Wang, S. Liu, Z. V. Vardeny, A. Nahata, “Liquid metal-based plasmonics,” Opt. Express 20(3), 2346–2353 (2012).
[CrossRef] [PubMed]

J. Wang, S. Liu, A. Nahata, “Reconfigurable plasmonic devices using liquid metals,” Opt. Express 20(11), 12119–12126 (2012).
[CrossRef] [PubMed]

2011 (3)

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[CrossRef]

M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011).
[CrossRef]

D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, “Stretchable organic solar cells,” Adv. Mater. 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

2010 (3)

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

B. Jin, C. Zhang, S. Engelbrecht, A. Pimenov, J. Wu, Q. Xu, C. Cao, J. Chen, W. Xu, L. Kang, P. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

2009 (2)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[CrossRef]

2008 (4)

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[CrossRef]

R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers,” Angew. Chem. Int. Ed. Engl. 47(1), 142–144 (2008).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

2006 (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

2004 (2)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

1999 (1)

J. N. Koster, “Directional solidification and melting of eutectic GaIn,” Cryst. Res. Technol. 34(9), 1129–1140 (1999).
[CrossRef]

1990 (1)

1969 (1)

D. Zrnic, D. S. Swatik, “On the resistivity and surface tension of the eutectic alloy of gallium and indium,” J. Less Common Met. 18(1), 67–68 (1969).
[CrossRef]

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Azad, A. K.

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Bao, Z.

D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, “Stretchable organic solar cells,” Adv. Mater. 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

Barnes, W. R.

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Cao, C.

Cao, W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Chen, H.-T.

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, J.

Chiechi, R. C.

R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers,” Angew. Chem. Int. Ed. Engl. 47(1), 142–144 (2008).
[CrossRef] [PubMed]

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[CrossRef]

Chiu, D. T.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Cumby, B. L.

B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
[CrossRef]

Desai, S.

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

Desai, S. C.

E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013).
[CrossRef] [PubMed]

Dickey, M. D.

E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013).
[CrossRef] [PubMed]

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
[CrossRef]

M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011).
[CrossRef]

J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[CrossRef]

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[CrossRef]

R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers,” Angew. Chem. Int. Ed. Engl. 47(1), 142–144 (2008).
[CrossRef] [PubMed]

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Engelbrecht, S.

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Fattinger, C.

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

Gu, J.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Ham, D.

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

Han, J.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Hashimoto, M.

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

Hayes, G. J.

B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
[CrossRef]

M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011).
[CrossRef]

J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[CrossRef]

He, M.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Heikenfeld, J. C.

B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
[CrossRef]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Jin, B.

Justice, R. S.

B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
[CrossRef]

Kang, L.

Keiding, S.

Kim, C.

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Koster, J. N.

J. N. Koster, “Directional solidification and melting of eutectic GaIn,” Cryst. Res. Technol. 34(9), 1129–1140 (1999).
[CrossRef]

Kubo, M.

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Larsen, R. J.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[CrossRef]

Lazzi, G.

M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011).
[CrossRef]

J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[CrossRef]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Li, X.

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Lipomi, D. J.

D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, “Stretchable organic solar cells,” Adv. Mater. 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

Liu, S.

Mays, R.

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Nahata, A.

O’Hara, J. F.

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Palleau, E.

E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013).
[CrossRef] [PubMed]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Pimenov, A.

Pourdeyhimi, B.

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

Qusba, A.

J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[CrossRef]

Rashed Khan, M.

M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011).
[CrossRef]

Reece, S.

E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013).
[CrossRef] [PubMed]

Roy Chowdhury, D.

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Schueller, O. J. A.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Singh, R.

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Smith, M. E.

E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013).
[CrossRef] [PubMed]

So, J.-H.

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011).
[CrossRef]

J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[CrossRef]

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Swatik, D. S.

D. Zrnic, D. S. Swatik, “On the resistivity and surface tension of the eutectic alloy of gallium and indium,” J. Less Common Met. 18(1), 67–68 (1969).
[CrossRef]

Tabor, C. E.

B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
[CrossRef]

Taylor, A. J.

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Tee, B. C.-K.

D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, “Stretchable organic solar cells,” Adv. Mater. 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

Thelen, J.

J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[CrossRef]

Tian, Z.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

van Exter, M.

Vardeny, Z. V.

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Vosgueritchian, M.

D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, “Stretchable organic solar cells,” Adv. Mater. 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

Wang, J.

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Weiss, E. A.

R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers,” Angew. Chem. Int. Ed. Engl. 47(1), 142–144 (2008).
[CrossRef] [PubMed]

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[CrossRef]

Weitz, D. A.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[CrossRef]

Whitesides, G. M.

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[CrossRef]

R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers,” Angew. Chem. Int. Ed. Engl. 47(1), 142–144 (2008).
[CrossRef] [PubMed]

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Wiley, B. J.

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

Wu, H.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Wu, J.

Wu, P.

Xing, Q.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Xu, Q.

Xu, W.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Zhang, C.

Zhang, J. W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Zhang, W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Zhu, S.

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Zrnic, D.

D. Zrnic, D. S. Swatik, “On the resistivity and surface tension of the eutectic alloy of gallium and indium,” J. Less Common Met. 18(1), 67–68 (1969).
[CrossRef]

Adv. Funct. Mater. (3)

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[CrossRef]

S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013).
[CrossRef]

J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009).
[CrossRef]

Adv. Mater. (3)

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010).
[CrossRef] [PubMed]

D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, “Stretchable organic solar cells,” Adv. Mater. 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers,” Angew. Chem. Int. Ed. Engl. 47(1), 142–144 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011).
[CrossRef]

B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012).
[CrossRef]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[CrossRef]

Cryst. Res. Technol. (1)

J. N. Koster, “Directional solidification and melting of eutectic GaIn,” Cryst. Res. Technol. 34(9), 1129–1140 (1999).
[CrossRef]

Electrophoresis (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

J. Less Common Met. (1)

D. Zrnic, D. S. Swatik, “On the resistivity and surface tension of the eutectic alloy of gallium and indium,” J. Less Common Met. 18(1), 67–68 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Science (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the unit cell. (a) A unit cell from the 7 × 9 array of rings. The device is composed of microfluidic channels fabricated within a PDMS mold. The lower horizontal channel in the figure (width D1) serves as the injection channel for all nine rings in the row. The seven injection channels, one per row, are connected to a common inlet. The periodicity of the rings is P = 315 μm in both dimensions and the distance between the upper and lower horizontal channels is L = 199.5 μm. All of the other dimensions are described in the main text. (b) Photograph of the metamaterial device in which all of the microchannels are filled with EGaIn.

Fig. 2
Fig. 2

(a) Photograph of a portion of the split ring resonator array. The background structures in the image are unfilled microchannels. Once the split ring resonators are formed and the pressure is released, this configuration is stable for any applied pressure between 0 and ~255 kPa. (b) Measured transmission spectrum with the THz electric field polarized perpendicular to the horizontal injection lines. (c) Numerically simulated transmission spectrum under the same excitation scheme. d) Snapshot of the numerically simulated current distribution using an excitation frequency of 0.17 THz.

Fig. 3
Fig. 3

(a) Photograph of a portion of the closed ring resonator array. The background structures in the image are unfilled microchannels. Once the CRRs are formed and the pressure is released, this configuration is stable for any applied pressure between 0 and ~296 kPa. (b) Measured transmission spectrum with the THz electric field polarized perpendicular to the horizontal injection lines. (c) Numerically simulated transmission spectrum under the same excitation scheme. d) Snapshot of the numerically simulated current distribution using an excitation frequency of 0.40 THz.

Fig. 4
Fig. 4

(a) Photograph of a portion of the irregular ring array. (b) Measured transmission spectrum with the THz electric field polarized perpendicular to the horizontal injection lines. (c) Numerically simulated transmission spectrum under the same excitation scheme. (d) Snapshot of the numerically simulated current distribution using an excitation frequency of 0.13 THz. (e) Snapshot of the numerically simulated current distribution using an excitation frequency of 0.44 THz.

Fig. 5
Fig. 5

The critical applied pressure required for filling EGaIn for each channel segment as a function of the sum of the inverse height (H) and width (W). The dashed line is a best-fit to only the two higher pressure data points. The slope of the best-fit line to the data for EGaIn is 1.01 N/m.

Fig. 6
Fig. 6

Properties of the reset device. (a) Photograph of a portion of the reset device (all of the EGaIn was returned to either the inlet or the outlet). The two short white line segments correspond to EGaIn that remained in the upper and lower horizontal channels. The different contrast in the image, as compared the earlier figures, was used to more clearly show the channel properties after resetting the device. (b) The corresponding transmission spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t(ν)=| t(ν) |exp[iφ(ν)]= E sample (ν) E reference (ν) .
P=2γcos( θ )( 1 W + 1 H ).

Metrics