Abstract

We report a rigorous study of the spectroscopic, laser and thermal properties of a 10at.% and a 15at.% Yb:LuAG crystals. A loss mechanism is observed in the medium with the highest doping, pumped at 936 nm and 968 nm, as a sharp and dramatic decrease of the laser output power is measured at higher excitation densities. The nonlinearity of the loss mechanism is confirmed by the fluorescence data and by the thermal lens. In particular, the dioptric power of the thermal lens acquired at different pumping levels shows a strong deviation of the expected linear trend. Here we report the influence of both the concentration and the ion excitation density of Yb3+ on the output powers, the slope efficiencies and the thresholds. Conversely excellent results are achieved with the 10at.%, which does not show any loss mechanism as at 1046 nm it delivers 11.8 W with a slope efficiency of ηs = 82%, which is, to the best of our knowledge, the highest value reported in literature for this material.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
    [CrossRef]
  2. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20(7), 713–715 (1995).
    [CrossRef] [PubMed]
  3. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25(11), 859–861 (2000).
    [CrossRef] [PubMed]
  4. K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA11_6.
  5. A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, H. Sato, “Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
    [CrossRef] [PubMed]
  6. S. Rivier, X. Mateos, Ò. Silvestre, V. Petrov, U. Griebner, M. C. Pujol, M. Aguiló, F. Díaz, S. Vernay, D. Rytz, “Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping,” Opt. Lett. 33(7), 735–737 (2008).
    [CrossRef] [PubMed]
  7. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [CrossRef]
  8. M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser (Herbert Utz Verlag, 2009).
  9. M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.
  10. K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).
  11. J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).
  12. C. Brandt, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
    [CrossRef]
  13. A. Pirri, G. Toci, D. Alderighi, M. Vannini, “Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics,” Opt. Express 18(16), 17262–17272 (2010).
    [CrossRef] [PubMed]
  14. H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012).
    [CrossRef] [PubMed]
  15. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
    [CrossRef] [PubMed]
  16. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Rodenas, D. Jaque, A. Eganuan, A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006).
    [CrossRef]
  17. J. Dong, K. Ueda, A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett. 7(10), 726–733 (2010).
    [CrossRef]
  18. J. He, X. Liang, J. Li, H. Yu, X. Xu, Z. Zhao, J. Xu, Z. Xu, “LD pumped Yb:LuAG mode-locked laser with 7.63ps duration,” Opt. Express 17(14), 11537–11542 (2009).
    [CrossRef] [PubMed]
  19. A. Pirri, M. Vannini, V. Babin, M. Nikl, G. Toci, “CW and quasi-CW laser performance of 10at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
    [CrossRef]
  20. M. Nikl, A. Yoshikawa, T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
    [CrossRef]
  21. M. Kucera, M. Nikl, M. Hanus, Z. Onderisinova, A. Beitlerova, “Growth, emission and scintillation properties of Tb-Sc doped LuAG epitaxial films,” IEEE Trans. Nucl. Sci. 59(5), 2275–2280 (2012).
    [CrossRef]
  22. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, “Thermal lensing in diode-pumped Ytterbium lasers—Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
    [CrossRef]
  23. L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
    [CrossRef]

2013 (1)

A. Pirri, M. Vannini, V. Babin, M. Nikl, G. Toci, “CW and quasi-CW laser performance of 10at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[CrossRef]

2012 (3)

M. Kucera, M. Nikl, M. Hanus, Z. Onderisinova, A. Beitlerova, “Growth, emission and scintillation properties of Tb-Sc doped LuAG epitaxial films,” IEEE Trans. Nucl. Sci. 59(5), 2275–2280 (2012).
[CrossRef]

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012).
[CrossRef] [PubMed]

2011 (1)

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

2010 (3)

2009 (3)

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

J. He, X. Liang, J. Li, H. Yu, X. Xu, Z. Zhao, J. Xu, Z. Xu, “LD pumped Yb:LuAG mode-locked laser with 7.63ps duration,” Opt. Express 17(14), 11537–11542 (2009).
[CrossRef] [PubMed]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, H. Sato, “Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).

2006 (1)

2005 (1)

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

2004 (2)

M. Nikl, A. Yoshikawa, T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, “Thermal lensing in diode-pumped Ytterbium lasers—Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

2003 (1)

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

2000 (1)

1995 (1)

Aguiló, M.

Alderighi, D.

Anghel, S.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Aus der Au, J.

Babin, V.

A. Pirri, M. Vannini, V. Babin, M. Nikl, G. Toci, “CW and quasi-CW laser performance of 10at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[CrossRef]

Baer, C. R. E.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Balembois, F.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, “Thermal lensing in diode-pumped Ytterbium lasers—Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Beil, K.

Beitlerova, A.

M. Kucera, M. Nikl, M. Hanus, Z. Onderisinova, A. Beitlerova, “Growth, emission and scintillation properties of Tb-Sc doped LuAG epitaxial films,” IEEE Trans. Nucl. Sci. 59(5), 2275–2280 (2012).
[CrossRef]

Bisson, J. F.

J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Boulon, G.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Rodenas, D. Jaque, A. Eganuan, A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006).
[CrossRef]

Brandt, C.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Brauch, U.

Brenier, A.

Canibano, H.

Chénais, S.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, “Thermal lensing in diode-pumped Ytterbium lasers—Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Díaz, F.

Dong, J.

J. Dong, K. Ueda, A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett. 7(10), 726–733 (2010).
[CrossRef]

Druon, F.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, “Thermal lensing in diode-pumped Ytterbium lasers—Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Eganuan, A.

Epicier, T.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Erhard, S.

Esposito, L.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Fredrich-Thornton, S. T.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[CrossRef] [PubMed]

J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).

Fukuda, T.

M. Nikl, A. Yoshikawa, T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Georges, P.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, “Thermal lensing in diode-pumped Ytterbium lasers—Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Giesen, A.

Golling, M.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Griebner, U.

Guyot, Y.

Hanus, M.

M. Kucera, M. Nikl, M. Hanus, Z. Onderisinova, A. Beitlerova, “Growth, emission and scintillation properties of Tb-Sc doped LuAG epitaxial films,” IEEE Trans. Nucl. Sci. 59(5), 2275–2280 (2012).
[CrossRef]

He, J.

Heckl, O. H.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Hövel, R.

Huber, G.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).

Jaque, D.

Kaminskii, A.

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Kaminskii, A. A.

J. Dong, K. Ueda, A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett. 7(10), 726–733 (2010).
[CrossRef]

Karszewski, M.

Keller, U.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25(11), 859–861 (2000).
[CrossRef] [PubMed]

Kouznetsov, D.

J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).

Kränkel, C.

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Kucera, M.

M. Kucera, M. Nikl, M. Hanus, Z. Onderisinova, A. Beitlerova, “Growth, emission and scintillation properties of Tb-Sc doped LuAG epitaxial films,” IEEE Trans. Nucl. Sci. 59(5), 2275–2280 (2012).
[CrossRef]

Li, J.

Liang, X.

Lucas-Leclin, G.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, “Thermal lensing in diode-pumped Ytterbium lasers—Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Mateos, X.

Moser, M.

Nakao, H.

Nikl, M.

A. Pirri, M. Vannini, V. Babin, M. Nikl, G. Toci, “CW and quasi-CW laser performance of 10at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[CrossRef]

M. Kucera, M. Nikl, M. Hanus, Z. Onderisinova, A. Beitlerova, “Growth, emission and scintillation properties of Tb-Sc doped LuAG epitaxial films,” IEEE Trans. Nucl. Sci. 59(5), 2275–2280 (2012).
[CrossRef]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, H. Sato, “Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[CrossRef] [PubMed]

M. Nikl, A. Yoshikawa, T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

Onderisinova, Z.

M. Kucera, M. Nikl, M. Hanus, Z. Onderisinova, A. Beitlerova, “Growth, emission and scintillation properties of Tb-Sc doped LuAG epitaxial films,” IEEE Trans. Nucl. Sci. 59(5), 2275–2280 (2012).
[CrossRef]

Paschotta, R.

Petermann, K.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).

Peters, R.

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Petrosyan, A. G.

Petrov, V.

Piancastelli, A.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Pirri, A.

A. Pirri, M. Vannini, V. Babin, M. Nikl, G. Toci, “CW and quasi-CW laser performance of 10at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[CrossRef]

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

A. Pirri, G. Toci, D. Alderighi, M. Vannini, “Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics,” Opt. Express 18(16), 17262–17272 (2010).
[CrossRef] [PubMed]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, H. Sato, “Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[CrossRef] [PubMed]

Pujol, M. C.

Rivier, S.

Rodenas, A.

Roger, J. P.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Rytz, D.

Saraceno, C. J.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Sato, H.

Serantoni, M.

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

Shirakawa, A.

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012).
[CrossRef] [PubMed]

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Silvestre, Ò.

Spühler, G. J.

Stewen, C.

Südmeyer, T.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25(11), 859–861 (2000).
[CrossRef] [PubMed]

Takaichi, K.

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Tellkamp, F.

Toci, G.

A. Pirri, M. Vannini, V. Babin, M. Nikl, G. Toci, “CW and quasi-CW laser performance of 10at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[CrossRef]

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

A. Pirri, G. Toci, D. Alderighi, M. Vannini, “Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics,” Opt. Express 18(16), 17262–17272 (2010).
[CrossRef] [PubMed]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, H. Sato, “Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[CrossRef] [PubMed]

Ueda, K.

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012).
[CrossRef] [PubMed]

J. Dong, K. Ueda, A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett. 7(10), 726–733 (2010).
[CrossRef]

J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Vannini, M.

A. Pirri, M. Vannini, V. Babin, M. Nikl, G. Toci, “CW and quasi-CW laser performance of 10at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[CrossRef]

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

A. Pirri, G. Toci, D. Alderighi, M. Vannini, “Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics,” Opt. Express 18(16), 17262–17272 (2010).
[CrossRef] [PubMed]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, H. Sato, “Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[CrossRef] [PubMed]

Vernay, S.

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Voss, A.

Xu, J.

Xu, X.

Xu, Z.

Yagi, H.

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012).
[CrossRef] [PubMed]

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Yanagitani, T.

H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012).
[CrossRef] [PubMed]

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

Yoshikawa, A.

M. Nikl, A. Yoshikawa, T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

Yu, H.

Zhao, Z.

Appl. Phys. B (3)

J. F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. B 90, 201901 (2007).

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, “Thermal lensing in diode-pumped Ytterbium lasers—Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

M. Kucera, M. Nikl, M. Hanus, Z. Onderisinova, A. Beitlerova, “Growth, emission and scintillation properties of Tb-Sc doped LuAG epitaxial films,” IEEE Trans. Nucl. Sci. 59(5), 2275–2280 (2012).
[CrossRef]

J. Eur. Ceram. Soc. (1)

L. Esposito, T. Epicier, M. Serantoni, A. Piancastelli, D. Alderighi, A. Pirri, G. Toci, M. Vannini, S. Anghel, G. Boulon, “Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications,” J. Eur. Ceram. Soc. 32(10), 2273–2281 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

K. Ueda, J. F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15(7), 927–938 (2005).

A. Pirri, M. Vannini, V. Babin, M. Nikl, G. Toci, “CW and quasi-CW laser performance of 10at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[CrossRef]

Laser Phys. Lett. (1)

J. Dong, K. Ueda, A. A. Kaminskii, “Laser-diode pumped efficient Yb:LuAG microchip lasers oscillating at 1030 and 1047 nm,” Laser Phys. Lett. 7(10), 726–733 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. (1)

M. Nikl, A. Yoshikawa, T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004).
[CrossRef]

Other (3)

M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser (Herbert Utz Verlag, 2009).

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA11_6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Absorption spectra of Yb-doped LuAG single crystals with concentration doping of 10at.% and 15at.%, in the interval 200-800 nm (a) and 800-1100 nm (b).

Fig. 2
Fig. 2

Excitation (PLE) and emission (PL) spectra related to the CTT of Yb3+ center in 10at.% (a) and in 15at.% (b) crystals.

Fig. 3
Fig. 3

Excitation (PLE) and emission (PL) spectra related to the Tb3+ impurity in Yb(10at.%):LuAG.

Fig. 4
Fig. 4

Experimental set up to test the laser performance of the samples. EM: End Mirror (flat); FM: Folding Mirror; OC: Output Coupler (flat); M1, M2: power meters; F1,2 filters for rejection of pump radiation (b); PD1,2: photodiodes.

Fig. 5
Fig. 5

Laser output power measured at low excitation density.(a): 10at.% doped sample, (b): 15at.% doped sample. T: output coupler transmission; λL: laser wavelength; ηs: slope efficiency. The crystals are pumped at 936 nm in quasi-CW (DF = 20%, 10 Hz). The unsaturated absorptions are 88.5% and 77.4% for the 10at.% and 15at.%, respectively.

Fig. 6
Fig. 6

Laser output power versus absorbed pump power at high excitation density. Both crystals emit at 1030 nm. The crystals are pumped at 936 nm in quasi-CW (DF = 20%, 10 Hz).

Fig. 7
Fig. 7

(a): Laser output power versus absorbed pump power at higher ion excitation density with two Duty Factor (20% and 40%); (b): the corresponding fluorescence light acquired when the crystal is lasing or switched off with DF = 40%.

Fig. 8
Fig. 8

Laser output power obtained by several OCs with low transmission at DF = 20% (a) and in CW (b); (c) shows the laser output obtained with three different DF, with an OC with high transmission (i.e. at higher ion excitation density). The pump wavelength is λp = 968 nm. The absorption at the pump wavelength is 73%.

Fig. 9
Fig. 9

Setup for the measurement the thermal lens dioptric power.

Fig. 10
Fig. 10

Thermal lens dioptric power as a function of the absorbed pump power for the 10at.% doped sample (a), 15at.% doped sample (b) and 20at.% doped sample (c). The solid curves are the second order polynomials or linear best fits.

Fig. 11
Fig. 11

Fluorescence quantum efficiency as calculated from the thermal lens measurements for the 15at.% and 20at.% samples .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D th = 1 f th = a 2 4 Z 2,0 M 2
D off = Δ off P abs = A off ( 1 η r λ P λ F ) P abs .
D on = Δ on P abs = A on ( 1 λ P λ L ) P abs
η r = λ F λ P [ 1 Δ off Δ on A on A off ( 1 λ P λ L ) ]
η r = λ F λ P [ 1 D off P abs A off ].

Metrics