Abstract

Applying strain on semiconductors is a powerful method to modulate its electronic structures and optical properties. In this study, the behavior of liquid-nitrogen exciton emissions and the longitudinal optical phonon–exciton interactions of tensile strained [0001]-orientated ZnO whiskers were investigated using in situ cathodoluminescence spectroscopy. It has been found that, under the axial tensile strain, various exciton emissions shift to the long wavelength and their shifts have a linear relationship with the applied strain. This linear relationship and reversible shift suggest that the strain plays a dominating role in manipulating light emissions of axially strained ZnO whiskers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
    [CrossRef]
  2. X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
    [CrossRef] [PubMed]
  3. Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
    [CrossRef]
  4. Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011).
    [CrossRef] [PubMed]
  5. K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
    [CrossRef] [PubMed]
  6. R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
    [CrossRef]
  7. Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).
  8. B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
    [CrossRef] [PubMed]
  9. Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009).
    [CrossRef] [PubMed]
  10. G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012).
    [PubMed]
  11. J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
    [CrossRef]
  12. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
    [CrossRef] [PubMed]
  13. A. Little, A. Hoffman, N. M. Haegel, “Optical attenuation coefficient in individual ZnO nanowires,” Opt. Express 21(5), 6321–6326 (2013).
    [CrossRef] [PubMed]
  14. M. Ding, D. Zhao, B. Yao, S. e, Z. Guo, L. Zhang, D. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012).
    [CrossRef] [PubMed]
  15. F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
    [CrossRef]
  16. H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
    [CrossRef] [PubMed]
  17. B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
    [CrossRef] [PubMed]
  18. Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).
  19. C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
    [CrossRef]
  20. X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
    [CrossRef]
  21. W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu, Q. Yang, “Bending effects on lasing action of semiconductor nanowires,” Opt. Express 21(2), 2024–2031 (2013).
    [CrossRef] [PubMed]
  22. B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
    [CrossRef] [PubMed]
  23. M. R. He, J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B 83(16), 161302 (2011).
    [CrossRef]
  24. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006).
    [CrossRef] [PubMed]
  25. R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011).
    [CrossRef]
  26. S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012).
    [CrossRef] [PubMed]
  27. X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013).
    [CrossRef] [PubMed]
  28. A. Mang, K. Reimann, S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. 94(4), 251–254 (1995).
    [CrossRef]
  29. J. Wrzesinski, D. Fröhlich, “Two-photon and three-photon spectroscopy of ZnO under uniaxial stress,” Phys. Rev. B 56(20), 13087–13093 (1997).
    [CrossRef]
  30. J. Rowe, M. Cardona, F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. 6(4), 239–242 (1968).
    [CrossRef]
  31. A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003).
    [CrossRef]
  32. T. Onuma, T. Yamaguchi, T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi 10(5c), 869–872 (2013).
    [CrossRef]
  33. H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
    [CrossRef]

2013

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

A. Little, A. Hoffman, N. M. Haegel, “Optical attenuation coefficient in individual ZnO nanowires,” Opt. Express 21(5), 6321–6326 (2013).
[CrossRef] [PubMed]

W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu, Q. Yang, “Bending effects on lasing action of semiconductor nanowires,” Opt. Express 21(2), 2024–2031 (2013).
[CrossRef] [PubMed]

X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013).
[CrossRef] [PubMed]

T. Onuma, T. Yamaguchi, T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi 10(5c), 869–872 (2013).
[CrossRef]

2012

S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012).
[CrossRef] [PubMed]

B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
[CrossRef] [PubMed]

M. Ding, D. Zhao, B. Yao, S. e, Z. Guo, L. Zhang, D. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012).
[CrossRef] [PubMed]

G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012).
[PubMed]

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
[CrossRef]

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
[CrossRef]

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

2011

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011).
[CrossRef] [PubMed]

C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
[CrossRef]

M. R. He, J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B 83(16), 161302 (2011).
[CrossRef]

R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011).
[CrossRef]

2010

F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
[CrossRef]

H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
[CrossRef] [PubMed]

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

2009

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009).
[CrossRef] [PubMed]

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

2007

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

2006

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006).
[CrossRef] [PubMed]

2003

A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003).
[CrossRef]

1997

J. Wrzesinski, D. Fröhlich, “Two-photon and three-photon spectroscopy of ZnO under uniaxial stress,” Phys. Rev. B 56(20), 13087–13093 (1997).
[CrossRef]

E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

1995

A. Mang, K. Reimann, S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. 94(4), 251–254 (1995).
[CrossRef]

1968

J. Rowe, M. Cardona, F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. 6(4), 239–242 (1968).
[CrossRef]

Allen, M.

R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011).
[CrossRef]

Al-Suleiman, M.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Baer, T. M.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
[CrossRef]

Bakin, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Behrends, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Björk, M. T.

G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012).
[PubMed]

Boukos, N.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Brongersma, M. L.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
[CrossRef]

Cao, B. Q.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Cao, Q.

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Cardona, M.

J. Rowe, M. Cardona, F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. 6(4), 239–242 (1968).
[CrossRef]

Che Mofor, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Chen, B.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Chen, C. Q.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006).
[CrossRef] [PubMed]

Chen, R.

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

Cheng, Y.

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

Czekalla, C.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Dai, L.

Deng, Q.

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

Dietrich, C. P.

C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
[CrossRef]

Ding, M.

Ding, Z. J.

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

Du, S.

S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012).
[CrossRef] [PubMed]

Durbin, S.

R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011).
[CrossRef]

e, S.

El-Shaer, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Fang, F.

F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
[CrossRef]

Fröhlich, D.

J. Wrzesinski, D. Fröhlich, “Two-photon and three-photon spectroscopy of ZnO under uniaxial stress,” Phys. Rev. B 56(20), 13087–13093 (1997).
[CrossRef]

Fu, Q.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Fu, X.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Fu, X.-W.

X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013).
[CrossRef] [PubMed]

Gao, J. Y.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Gao, Q.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Gao, Y. F.

Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009).
[CrossRef] [PubMed]

Gong, H.

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

Gotsmann, B.

G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012).
[PubMed]

Grundmann, M.

C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
[CrossRef]

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Guinard, J.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Guo, W.

S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012).
[CrossRef] [PubMed]

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Guo, W. L.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Guo, X. Y.

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

Guo, Z.

Haegel, N. M.

Han, X.

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
[CrossRef]

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011).
[CrossRef] [PubMed]

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

Han, X. B.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Han, X. D.

B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
[CrossRef] [PubMed]

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

Hao, Y. J.

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

He, M. R.

M. R. He, J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B 83(16), 161302 (2011).
[CrossRef]

Herrera-Cabrera, M.

A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003).
[CrossRef]

Hoffman, A.

Honda, T.

T. Onuma, T. Yamaguchi, T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi 10(5c), 869–872 (2013).
[CrossRef]

Hou, J. G.

H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
[CrossRef] [PubMed]

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

Howe, R. T.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
[CrossRef]

Hryciw, A.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
[CrossRef]

Hu, Y. F.

Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009).
[CrossRef] [PubMed]

Jagadish, C.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Jain, J. R.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
[CrossRef]

Ji, Y.

B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
[CrossRef] [PubMed]

Jiang, J.

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Jiang, Q.

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Karg, S.

G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012).
[PubMed]

Klupfel, F. J.

C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
[CrossRef]

Kou, L. Z.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Kwack, H. S.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Lang, X. L.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Lange, M.

C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
[CrossRef]

Le Si Dang, D.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Leprince-Wang, Y.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Li, B.

F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
[CrossRef]

Li, M.

H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
[CrossRef] [PubMed]

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

Li, Y.

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
[CrossRef]

Liao, X.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Liao, Z. M.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Liao, Z.-M.

X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013).
[CrossRef] [PubMed]

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Lieber, C. M.

E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

Little, A.

Liu, P.

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011).
[CrossRef] [PubMed]

Liu, R.

X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013).
[CrossRef] [PubMed]

Liu, X.

Lorenz, M.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Loy, M. M.

S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012).
[CrossRef] [PubMed]

Lu, J.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Ma, E.

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011).
[CrossRef] [PubMed]

Ma, Y.

W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu, Q. Yang, “Bending effects on lasing action of semiconductor nanowires,” Opt. Express 21(2), 2024–2031 (2013).
[CrossRef] [PubMed]

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Mai, Y.-W.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Mang, A.

A. Mang, K. Reimann, S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. 94(4), 251–254 (1995).
[CrossRef]

Manjon, F.

A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003).
[CrossRef]

Mendelsberg, R.

R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011).
[CrossRef]

Meng, C.

Miller, D. A.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
[CrossRef]

Munoz, A.

A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003).
[CrossRef]

Nur, O.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Onuma, T.

T. Onuma, T. Yamaguchi, T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi 10(5c), 869–872 (2013).
[CrossRef]

Pan, N.

H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
[CrossRef] [PubMed]

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

Pollak, F.

J. Rowe, M. Cardona, F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. 6(4), 239–242 (1968).
[CrossRef]

Postels, B.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Qin, R.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Qin, Y.

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

Reeves, R.

R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011).
[CrossRef]

Reimann, K.

A. Mang, K. Reimann, S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. 94(4), 251–254 (1995).
[CrossRef]

Riel, H.

G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012).
[PubMed]

Ringer, S. P.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Rowe, J.

J. Rowe, M. Cardona, F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. 6(4), 239–242 (1968).
[CrossRef]

Rübenacke, S.

A. Mang, K. Reimann, S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. 94(4), 251–254 (1995).
[CrossRef]

Sans, J.

A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003).
[CrossRef]

Schmidt-Grund, R.

C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
[CrossRef]

Segura, A.

A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003).
[CrossRef]

Shan, X. D.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Shao, R.

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
[CrossRef]

Sheehan, P. E.

E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

Shen, D.

M. Ding, D. Zhao, B. Yao, S. e, Z. Guo, L. Zhang, D. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012).
[CrossRef] [PubMed]

F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
[CrossRef]

Shi, Y.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006).
[CrossRef] [PubMed]

Shvets, I. V.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Signorello, G.

G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012).
[PubMed]

Singamaneni, S.

Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009).
[CrossRef] [PubMed]

Song, X. F.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Sun, H. D.

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

Sun, X.

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

Tan, H. H.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Tong, L.

Travlos, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Tsukruk, V. V.

Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009).
[CrossRef] [PubMed]

von Wenckstern, H.

C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
[CrossRef]

Waag, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Wang, L. H.

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

Wang, N.

S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012).
[CrossRef] [PubMed]

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Wang, X.

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
[CrossRef]

H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
[CrossRef] [PubMed]

Wang, X. P.

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

Wang, Y.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu, Q. Yang, “Bending effects on lasing action of semiconductor nanowires,” Opt. Express 21(2), 2024–2031 (2013).
[CrossRef] [PubMed]

Wang, Z. L.

Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009).
[CrossRef] [PubMed]

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

Wei, B.

B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
[CrossRef] [PubMed]

Willander, M.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Wong, E. W.

E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

Wrzesinski, J.

J. Wrzesinski, D. Fröhlich, “Two-photon and three-photon spectroscopy of ZnO under uniaxial stress,” Phys. Rev. B 56(20), 13087–13093 (1997).
[CrossRef]

Wu, H.-C.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Wu, X.

W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu, Q. Yang, “Bending effects on lasing action of semiconductor nanowires,” Opt. Express 21(2), 2024–2031 (2013).
[CrossRef] [PubMed]

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Wu, Y.

H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
[CrossRef] [PubMed]

Xia, J. B.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Xu, J.

X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013).
[CrossRef] [PubMed]

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Xu, S.

S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012).
[CrossRef] [PubMed]

Xue, H.

H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
[CrossRef] [PubMed]

Xue, H. Z.

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

Yamaguchi, T.

T. Onuma, T. Yamaguchi, T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi 10(5c), 869–872 (2013).
[CrossRef]

Yan, B.

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

Yan, Y. J.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006).
[CrossRef] [PubMed]

Yang, L. L.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Yang, Q.

Yang, W.

Yao, B.

Ye, Y.

Yu, D.

X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013).
[CrossRef] [PubMed]

Yu, D. P.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Yu, D.-P.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Yu, T.

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

Yuan, J.

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

Yue, Y.

Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011).
[CrossRef] [PubMed]

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

Yue, Y. H.

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

Zeng, R. G.

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

Zhang, D.

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Zhang, J. X.

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

Zhang, L.

M. Ding, D. Zhao, B. Yao, S. e, Z. Guo, L. Zhang, D. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012).
[CrossRef] [PubMed]

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

Zhang, X. N.

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

Zhang, X. Z.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Zhang, Y.

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
[CrossRef]

Zhang, Y. F.

B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
[CrossRef] [PubMed]

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

Zhang, Y. S.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006).
[CrossRef] [PubMed]

Zhang, Z.

B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
[CrossRef] [PubMed]

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
[CrossRef]

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011).
[CrossRef] [PubMed]

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
[CrossRef]

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

Zhao, D.

M. Ding, D. Zhao, B. Yao, S. e, Z. Guo, L. Zhang, D. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012).
[CrossRef] [PubMed]

F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
[CrossRef]

Zhao, Q.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Zhao, Q. X.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Zheng, K.

B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
[CrossRef] [PubMed]

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
[CrossRef]

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

Zhou, W. W.

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

Zhu, J.

M. R. He, J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B 83(16), 161302 (2011).
[CrossRef]

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006).
[CrossRef] [PubMed]

Zhu, X.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Zimmermann, G.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

Zou, J.

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Zúñiga Pérez, J.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

ACS Nano

X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013).
[CrossRef] [PubMed]

Acta Mater.

Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011).
[CrossRef]

Adv. Mater.

X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009).
[CrossRef]

Appl. Phys. Lett.

C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011).
[CrossRef]

A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003).
[CrossRef]

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012).
[CrossRef]

J. Phys. Chem. C

H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009).
[CrossRef]

F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010).
[CrossRef]

Nano Lett.

S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012).
[CrossRef] [PubMed]

B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012).
[CrossRef] [PubMed]

Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011).
[CrossRef] [PubMed]

K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009).
[CrossRef] [PubMed]

X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007).
[CrossRef] [PubMed]

B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013).
[CrossRef] [PubMed]

Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009).
[CrossRef] [PubMed]

G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012).
[PubMed]

Nanotechnology

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009).
[CrossRef] [PubMed]

H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010).
[CrossRef] [PubMed]

B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010).
[CrossRef] [PubMed]

Nat. Photonics

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012).
[CrossRef]

Opt. Express

Phys. Rev. B

J. Wrzesinski, D. Fröhlich, “Two-photon and three-photon spectroscopy of ZnO under uniaxial stress,” Phys. Rev. B 56(20), 13087–13093 (1997).
[CrossRef]

R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011).
[CrossRef]

M. R. He, J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B 83(16), 161302 (2011).
[CrossRef]

Phys. Rev. Lett.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi

T. Onuma, T. Yamaguchi, T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi 10(5c), 869–872 (2013).
[CrossRef]

Sci. Rep.

Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).

Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).

Science

E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

Solid State Commun.

A. Mang, K. Reimann, S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. 94(4), 251–254 (1995).
[CrossRef]

J. Rowe, M. Cardona, F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. 6(4), 239–242 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A mechanical-CL combined experiment setup and experiment results of a strain-free ZnO whisker under the liquid nitrogen (a)The schematic illustration of the experiment setup. (b) SEM image of a ZnO whisker in the experiment setup, the inset showing the diameter of ZnO whisker. (c) A cross section of a fractured ZnO whisker showing the hexagonal cross-section. (d) CL spectrum of the NBE peaks of a strain-free ZnO whisker.

Fig. 2
Fig. 2

The excition emission spectra of a 1.26 μm thick ZnO whisker under different tensile strains.

Fig. 3
Fig. 3

The Photon energy shifts of FX, D0X, FX-1LO, FX-2LO as a function of axial tensile strain.

Fig. 4
Fig. 4

A linescan of the excition emission spectra from the entire cross section of ZnO whisker (a) A schematic setting for the electron beam line-scan CL spectrum measurement. (b) CL line-scan spectrum maps of a 1.60 μm thick ZnO whisker under strain-free and axial tensile strain of 1.48%, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε c tension = σ c E 3 = 1 E 3 Kδ S ,
E s = E 0 +Δ E c tension = E 0 + a c ε c ,
Δ E FXnLO ε c = Δ E FX ε c Δ ω LO ε c

Metrics