Abstract

The particulate emission during nanosecond ablation of gold targets was investigated at various fluences (10-100 Jcm−2) and vacuum levels (0.05-750 Torr). Atomic emission spectra were acquired during the ablation process and post-mortem characterization of particle spatial distribution was performed using scanning electron microscopy. The discussion of the results in the context of existing theoretical models permitted the identification of four distinct mass removal mechanisms. While the presence, shape and intensity of atomic emission lines is a telltale of the nanoparticle formation process, the fluctuations of the emission signal over a number of laser shots was linked to the production of microscopic debris.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Miller, “A brief story of laser ablation,” AIP Conf. Proc. 288, 619–622 (1993).
    [CrossRef]
  2. M. Baudelet, B. W. Smith, “The first years of laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(5), 624–629 (2013).
    [CrossRef]
  3. R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
    [CrossRef] [PubMed]
  4. W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2010).
  5. A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
    [CrossRef] [PubMed]
  6. J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
    [CrossRef]
  7. J. Schou, “Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film,” Appl. Surf. Sci. 255(10), 5191–5198 (2009).
    [CrossRef]
  8. S.-B. Wen, X. Mao, R. Greif, R. E. Russo, “Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure,” J. Appl. Phys. 101(12), 123105 (2007).
    [CrossRef]
  9. S. Palanco, J. Laserna, “Spectral analysis of the acoustic emission of laser-produced plasmas,” Appl. Opt. 42(30), 6078–6084 (2003).
    [CrossRef] [PubMed]
  10. S. Conesa, S. Palanco, J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta, B At. Spectrosc. 59(9), 1395–1401 (2004).
    [CrossRef]
  11. R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
    [CrossRef]
  12. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
    [CrossRef]
  13. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
    [CrossRef]
  14. M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
    [CrossRef]
  15. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
    [CrossRef]
  16. P. R. Willmott, J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
    [CrossRef]
  17. E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
    [CrossRef]
  18. B. S. Luk’yanchuk, W. Marine, S. I. Anisimov, “Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si,” Laser Phys. 8, 291–302 (1998).
  19. P. M. Ossi, “Cluster synthesis and cluster-assembled deposition in nanosecond pulsed laser ablation,” in Laser-Surface Interactions for New Materials Production, A. Miotello and P. M. Ossi, eds. (Springer, 2010).
  20. Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989).
  21. R. E. Russo, X. Mao, J. H. Yoo, and J. Gonzalez, “Laser ablation,” in Laser-Induced Breakdown Spectroscopy, S. N. Thakur and J. P. Singh, eds. (Elsevier, 2008).
  22. J. Koch, D. Günther, “Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 65(5), 155–162 (2011).
    [CrossRef] [PubMed]
  23. X. Mao, R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys., A Mater. Sci. Process. 64, 1–6 (1997).
  24. R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989).
  25. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54(3), 331–340 (2000).
    [CrossRef]
  26. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  27. C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
    [CrossRef]
  28. D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
    [CrossRef]
  29. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta, B At. Spectrosc. 58(11), 1867–1893 (2003).
    [CrossRef]
  30. D. J. Lim, H. Ki, J. Mazumder, “Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL),” J. Phys. D 39(12), 2624–2635 (2006).
    [CrossRef]
  31. A. Gragossian, S. H. Tavassoli, B. Shokri, “Laser ablation of aluminum from normal evaporation to phase explosion,” J. Appl. Phys. 105(10), 103304 (2009).
    [CrossRef]
  32. N. M. Bulgakova, A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
    [CrossRef]
  33. M. Stafe, C. Negutu, I. M. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
    [CrossRef]
  34. Gwyddion software package V2.29, GNU General Public License, 2012, http://gwyddion.net
  35. G. I. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 159–174 (1950).
    [CrossRef]
  36. G. I. Taylor, “The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 175–186 (1950).
    [CrossRef]
  37. L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech. 10, 241–250 (1946).

2013 (2)

M. Baudelet, B. W. Smith, “The first years of laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(5), 624–629 (2013).
[CrossRef]

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[CrossRef] [PubMed]

2012 (1)

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[CrossRef]

2011 (1)

J. Koch, D. Günther, “Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 65(5), 155–162 (2011).
[CrossRef] [PubMed]

2010 (1)

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Schou, “Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film,” Appl. Surf. Sci. 255(10), 5191–5198 (2009).
[CrossRef]

A. Gragossian, S. H. Tavassoli, B. Shokri, “Laser ablation of aluminum from normal evaporation to phase explosion,” J. Appl. Phys. 105(10), 103304 (2009).
[CrossRef]

2008 (2)

C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

2007 (3)

S.-B. Wen, X. Mao, R. Greif, R. E. Russo, “Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure,” J. Appl. Phys. 101(12), 123105 (2007).
[CrossRef]

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

M. Stafe, C. Negutu, I. M. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[CrossRef]

2006 (3)

D. J. Lim, H. Ki, J. Mazumder, “Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL),” J. Phys. D 39(12), 2624–2635 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

2004 (1)

S. Conesa, S. Palanco, J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta, B At. Spectrosc. 59(9), 1395–1401 (2004).
[CrossRef]

2003 (2)

S. Palanco, J. Laserna, “Spectral analysis of the acoustic emission of laser-produced plasmas,” Appl. Opt. 42(30), 6078–6084 (2003).
[CrossRef] [PubMed]

A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta, B At. Spectrosc. 58(11), 1867–1893 (2003).
[CrossRef]

2001 (1)

N. M. Bulgakova, A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

2000 (3)

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54(3), 331–340 (2000).
[CrossRef]

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

P. R. Willmott, J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[CrossRef]

1999 (1)

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

1998 (2)

B. S. Luk’yanchuk, W. Marine, S. I. Anisimov, “Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si,” Laser Phys. 8, 291–302 (1998).

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

1997 (1)

X. Mao, R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys., A Mater. Sci. Process. 64, 1–6 (1997).

1993 (1)

J. C. Miller, “A brief story of laser ablation,” AIP Conf. Proc. 288, 619–622 (1993).
[CrossRef]

1950 (2)

G. I. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 159–174 (1950).
[CrossRef]

G. I. Taylor, “The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 175–186 (1950).
[CrossRef]

1946 (1)

L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech. 10, 241–250 (1946).

Afonso, C. N.

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

Aguilera, J. A.

C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Al-Khateeb, A.

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

Anisimov, S. I.

B. S. Luk’yanchuk, W. Marine, S. I. Anisimov, “Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si,” Laser Phys. 8, 291–302 (1998).

Aragón, C.

C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Baudelet, M.

M. Baudelet, B. W. Smith, “The first years of laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(5), 624–629 (2013).
[CrossRef]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Bogaerts, A.

A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta, B At. Spectrosc. 58(11), 1867–1893 (2003).
[CrossRef]

Bulgakov, A. V.

N. M. Bulgakova, A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

Bulgakova, N. M.

N. M. Bulgakova, A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

Chen, Z.

A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta, B At. Spectrosc. 58(11), 1867–1893 (2003).
[CrossRef]

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Chevalier, J.-M.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Chimier, B.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Combis, P.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Conesa, S.

S. Conesa, S. Palanco, J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta, B At. Spectrosc. 59(9), 1395–1401 (2004).
[CrossRef]

Cremers, D. A.

Delaporte, P.

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

Doyle, L.

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Durand, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[CrossRef]

Etchessahar, B.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Ferris, M. J.

Fréjafon, E.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

Galvan-Sosa, M.

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

Gijbels, R.

A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta, B At. Spectrosc. 58(11), 1867–1893 (2003).
[CrossRef]

Gonzalez, J. J.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[CrossRef] [PubMed]

Gonzalo, J.

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

Gragossian, A.

A. Gragossian, S. H. Tavassoli, B. Shokri, “Laser ablation of aluminum from normal evaporation to phase explosion,” J. Appl. Phys. 105(10), 103304 (2009).
[CrossRef]

Greif, R.

S.-B. Wen, X. Mao, R. Greif, R. E. Russo, “Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure,” J. Appl. Phys. 101(12), 123105 (2007).
[CrossRef]

Grojo, D.

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

Günther, D.

J. Koch, D. Günther, “Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 65(5), 155–162 (2011).
[CrossRef] [PubMed]

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Hallo, L.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Hébert, D.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Huber, J. R.

P. R. Willmott, J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

Kautek, W.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Ki, H.

D. J. Lim, H. Ki, J. Mazumder, “Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL),” J. Phys. D 39(12), 2624–2635 (2006).
[CrossRef]

Knight, A. K.

Koch, J.

J. Koch, D. Günther, “Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 65(5), 155–162 (2011).
[CrossRef] [PubMed]

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Krüger, J.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

Lamb, M. J.

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Laserna, J.

Laserna, J. J.

S. Conesa, S. Palanco, J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta, B At. Spectrosc. 59(9), 1395–1401 (2004).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Lescoute, E.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Lewis, C. L. S.

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Lim, D. J.

D. J. Lim, H. Ki, J. Mazumder, “Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL),” J. Phys. D 39(12), 2624–2635 (2006).
[CrossRef]

Lim, K.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[CrossRef]

Liu, H. C.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, W. Marine, S. I. Anisimov, “Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si,” Laser Phys. 8, 291–302 (1998).

Mao, S. S.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Mao, X.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[CrossRef] [PubMed]

S.-B. Wen, X. Mao, R. Greif, R. E. Russo, “Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure,” J. Appl. Phys. 101(12), 123105 (2007).
[CrossRef]

X. Mao, R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys., A Mater. Sci. Process. 64, 1–6 (1997).

Mao, X. L.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Marine, W.

B. S. Luk’yanchuk, W. Marine, S. I. Anisimov, “Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si,” Laser Phys. 8, 291–302 (1998).

Martin, G.

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Mazumder, J.

D. J. Lim, H. Ki, J. Mazumder, “Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL),” J. Phys. D 39(12), 2624–2635 (2006).
[CrossRef]

Miller, J. C.

J. C. Miller, “A brief story of laser ablation,” AIP Conf. Proc. 288, 619–622 (1993).
[CrossRef]

Morrow, T.

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Negutu, C.

M. Stafe, C. Negutu, I. M. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[CrossRef]

Palanco, S.

S. Conesa, S. Palanco, J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta, B At. Spectrosc. 59(9), 1395–1401 (2004).
[CrossRef]

S. Palanco, J. Laserna, “Spectral analysis of the acoustic emission of laser-produced plasmas,” Appl. Opt. 42(30), 6078–6084 (2003).
[CrossRef] [PubMed]

Perea, A.

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

Pereira, A.

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

Popescu, I. M.

M. Stafe, C. Negutu, I. M. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[CrossRef]

Puerto, D.

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

Ramme, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[CrossRef]

Resta, V.

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

Richardson, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[CrossRef]

Riley, D.

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Russo, R. E.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[CrossRef] [PubMed]

S.-B. Wen, X. Mao, R. Greif, R. E. Russo, “Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure,” J. Appl. Phys. 101(12), 123105 (2007).
[CrossRef]

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

X. Mao, R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys., A Mater. Sci. Process. 64, 1–6 (1997).

Sarnet, T.

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Scherbarth, N. L.

Schou, J.

J. Schou, “Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film,” Appl. Surf. Sci. 255(10), 5191–5198 (2009).
[CrossRef]

Sedov, L. I.

L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech. 10, 241–250 (1946).

Sentis, M.

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

Shokri, B.

A. Gragossian, S. H. Tavassoli, B. Shokri, “Laser ablation of aluminum from normal evaporation to phase explosion,” J. Appl. Phys. 105(10), 103304 (2009).
[CrossRef]

Siegel, J.

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

Smith, B. W.

M. Baudelet, B. W. Smith, “The first years of laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(5), 624–629 (2013).
[CrossRef]

Spielmann, C.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Stafe, M.

M. Stafe, C. Negutu, I. M. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[CrossRef]

Tavassoli, S. H.

A. Gragossian, S. H. Tavassoli, B. Shokri, “Laser ablation of aluminum from normal evaporation to phase explosion,” J. Appl. Phys. 105(10), 103304 (2009).
[CrossRef]

Taylor, G. I.

G. I. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 159–174 (1950).
[CrossRef]

G. I. Taylor, “The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 175–186 (1950).
[CrossRef]

Tikhonchuk, V. T.

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Torres, R.

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

Vertes, A.

A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta, B At. Spectrosc. 58(11), 1867–1893 (2003).
[CrossRef]

Weaver, I.

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Weidman, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[CrossRef]

Wen, S.-B.

S.-B. Wen, X. Mao, R. Greif, R. E. Russo, “Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure,” J. Appl. Phys. 101(12), 123105 (2007).
[CrossRef]

Willmott, P. R.

P. R. Willmott, J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[CrossRef]

Wolf, J. P.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Yoo, J.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[CrossRef] [PubMed]

Yoo, J. H.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Yu, J.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

Zorba, V.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[CrossRef] [PubMed]

AIP Conf. Proc. (1)

J. C. Miller, “A brief story of laser ablation,” AIP Conf. Proc. 288, 619–622 (1993).
[CrossRef]

Anal. Chem. (1)

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

X. Mao, R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys., A Mater. Sci. Process. 64, 1–6 (1997).

N. M. Bulgakova, A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

Appl. Spectrosc. (2)

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54(3), 331–340 (2000).
[CrossRef]

J. Koch, D. Günther, “Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry,” Appl. Spectrosc. 65(5), 155–162 (2011).
[CrossRef] [PubMed]

Appl. Surf. Sci. (2)

M. Stafe, C. Negutu, I. M. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[CrossRef]

J. Schou, “Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film,” Appl. Surf. Sci. 255(10), 5191–5198 (2009).
[CrossRef]

J. Anal. At. Spectrom. (1)

M. Baudelet, B. W. Smith, “The first years of laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(5), 624–629 (2013).
[CrossRef]

J. Appl. Math. Mech. (1)

L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech. 10, 241–250 (1946).

J. Appl. Phys. (3)

A. Gragossian, S. H. Tavassoli, B. Shokri, “Laser ablation of aluminum from normal evaporation to phase explosion,” J. Appl. Phys. 105(10), 103304 (2009).
[CrossRef]

S.-B. Wen, X. Mao, R. Greif, R. E. Russo, “Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure,” J. Appl. Phys. 101(12), 123105 (2007).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

J. Phys. D (1)

D. J. Lim, H. Ki, J. Mazumder, “Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL),” J. Phys. D 39(12), 2624–2635 (2006).
[CrossRef]

Laser Phys. (1)

B. S. Luk’yanchuk, W. Marine, S. I. Anisimov, “Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si,” Laser Phys. 8, 291–302 (1998).

Nanoscale Res. Lett. (1)

A. V. Kabashin, P. Delaporte, A. Pereira, D. Grojo, R. Torres, T. Sarnet, M. Sentis, “Nanofabrication with pulsed lasers,” Nanoscale Res. Lett. 5(3), 454–463 (2010).
[CrossRef] [PubMed]

Phys. Plasmas (1)

E. Lescoute, L. Hallo, D. Hébert, B. Chimier, B. Etchessahar, V. T. Tikhonchuk, J.-M. Chevalier, P. Combis, “Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma,” Phys. Plasmas 15(6), 063507 (2008).
[CrossRef]

Phys. Rev. B (1)

J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C. N. Afonso, “Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold,” Phys. Rev. B 76(3), 035435 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Plasma Sour. Sci. Technol. (1)

D. Riley, I. Weaver, T. Morrow, M. J. Lamb, G. Martin, L. Doyle, A. Al-Khateeb, C. L. S. Lewis, “Spectral simulation of laser ablated magnesium plasmas,” Plasma Sour. Sci. Technol. 9(3), 270–278 (2000).
[CrossRef]

Proc. R. Soc. London A Math. Phys. Sci. (2)

G. I. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 159–174 (1950).
[CrossRef]

G. I. Taylor, “The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945,” Proc. R. Soc. London A Math. Phys. Sci. 201(1065), 175–186 (1950).
[CrossRef]

Rev. Mod. Phys. (1)

P. R. Willmott, J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[CrossRef]

Spectrochim. Acta, B At. Spectrosc. (3)

S. Conesa, S. Palanco, J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta, B At. Spectrosc. 59(9), 1395–1401 (2004).
[CrossRef]

A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta, B At. Spectrosc. 58(11), 1867–1893 (2003).
[CrossRef]

C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Other (7)

Gwyddion software package V2.29, GNU General Public License, 2012, http://gwyddion.net

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989).

P. M. Ossi, “Cluster synthesis and cluster-assembled deposition in nanosecond pulsed laser ablation,” in Laser-Surface Interactions for New Materials Production, A. Miotello and P. M. Ossi, eds. (Springer, 2010).

Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989).

R. E. Russo, X. Mao, J. H. Yoo, and J. Gonzalez, “Laser ablation,” in Laser-Induced Breakdown Spectroscopy, S. N. Thakur and J. P. Singh, eds. (Elsevier, 2008).

W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Top view of the experimental setup. 1 laser source, 2 sample holder, 3 spectrograph, 4 iCCD, 5 digital delay generator, 6 CMOS/EMCCD, 7 vacuum chamber, 8 turbo-molecular pump, 9 baratron, 10 pulsed valve, 11 gas inlet, FM folding mirror, BE1, BE2 beam expander components, FL focusing lens, CL collection lens. (B) layout of the sample holder illustrating the gold sample, the laser beam direction and the two witness plates WP-A and WP-B.

Fig. 2
Fig. 2

Atomic emission spectra of a gold sample acquired at different fluence and vacuum conditions: (a) 100 J cm−2 and 750 Torr, (b) 10 J cm−2 and 750 Torr, (c) 100 J cm−2 and 0.5 Torr, (d) 10 J cm−2 and 0.5 Torr. The acquisition gate was 50 ns after a delay of 1500 ns from the laser pulse. The intensity (a.u.) scales of spectra (c) and (d) has been magnified 3.7 times to improve visibility. Wavelength labels have been rounded to two decimal places.

Fig. 3
Fig. 3

Intensity of the Au(I) emission line at 264.148 nm versus pressure. (solid dot) 100 J cm−2, (circled dot) 10 J cm−2. The error bars correspond to the standard deviation of the line intensity over 50 successive laser shots on the same surface spot. The inset illustrates the intensity of the Ar(I) 696.543 nm line in the same pressure interval.

Fig. 4
Fig. 4

Averaged ablation rate (AAR) calculated by counting the number of laser shots required to drill a 127-µm thick gold foil in the 0.5-750 Torr interval.

Fig. 5
Fig. 5

Scanning electron micrographs of the WP used to collect the particle emission during irradiation of the gold samples with a 100 J cm−2 fluence. A, and B stand for the positions described for the WP in Fig. 1(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I λ = hc λ gAN e E/kT Q(T)
R=λ ( E ρ ) 1/(2+β) t 2/(2+β)

Metrics