Abstract

A rapid method of fabricating microscopic tubular structures via two-photon polymerization is presented. Novel Fresnel lens is designed and applied to modulate the light field into a uniform ring pattern with controllable diameters. Comparing with the conventional holographic processing method, Fresnel lens shows higher uniformity and better flexibility, while easier to generate. This versatile method provides a powerful solution to produce tube structure array within several seconds.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
    [CrossRef] [PubMed]
  2. G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
    [CrossRef] [PubMed]
  3. K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
    [CrossRef] [PubMed]
  4. X. Yang, L. Wang, S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
    [CrossRef]
  5. D. J. Thurmer, C. Deneke, Y. Mei, O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
    [CrossRef]
  6. S. Kawata, H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
    [CrossRef]
  7. K. Lee, R. H. Kim, D. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
    [CrossRef]
  8. S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
    [CrossRef]
  9. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
    [CrossRef]
  10. H. Takahashi, S. Hasegawa, A. Takita, Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
    [PubMed]
  11. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [CrossRef]
  12. S. Hasegawa, Y. Hayasaki, N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
    [CrossRef] [PubMed]
  13. J. Amako, H. Miura, T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995).
    [CrossRef] [PubMed]
  14. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010).
    [CrossRef] [PubMed]
  15. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
    [CrossRef] [PubMed]
  16. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
    [CrossRef]
  17. S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  18. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
    [CrossRef] [PubMed]

2012 (1)

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

2011 (2)

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[CrossRef] [PubMed]

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Lee, R. H. Kim, D. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

H. Takahashi, S. Hasegawa, A. Takita, Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

2007 (1)

X. Yang, L. Wang, S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[CrossRef]

2006 (2)

D. J. Thurmer, C. Deneke, Y. Mei, O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[CrossRef]

S. Hasegawa, Y. Hayasaki, N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

2005 (2)

Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[CrossRef]

2003 (1)

S. Kawata, H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
[CrossRef]

2001 (2)

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

1995 (1)

Amako, J.

Chichkov, B. N.

Chilkoti, A.

Clark, R. L.

Coric, E.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[CrossRef] [PubMed]

Deneke, C.

D. J. Thurmer, C. Deneke, Y. Mei, O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[CrossRef]

Gadonas, R.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Gedvilas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Gertus, T.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Gittard, S. D.

Hasegawa, S.

Hayasaki, Y.

Hill, R. T.

Hnatovsky, C.

Huang, G.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[CrossRef] [PubMed]

Hucknall, A.

Ishida, M.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[CrossRef] [PubMed]

Jenness, N. J.

Juodkazis, S.

S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[CrossRef]

Kaneko, H.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[CrossRef] [PubMed]

Kawano, T.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[CrossRef] [PubMed]

Kawashima, T.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[CrossRef] [PubMed]

Kawata, S.

S. Kawata, H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Kim, R. H.

K. Lee, R. H. Kim, D. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Kiravittaya, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[CrossRef]

Koroleva, A.

Krolikowski, W.

Lee, K.

K. Lee, R. H. Kim, D. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Malinauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Matsuo, S.

S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[CrossRef]

Mei, Y.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[CrossRef] [PubMed]

D. J. Thurmer, C. Deneke, Y. Mei, O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[CrossRef]

Misawa, H.

S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[CrossRef]

Miura, H.

Narayan, R. J.

Nguyen, A.

Nishida, N.

S. Hasegawa, Y. Hayasaki, N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Obata, K.

Park, S. H.

K. Lee, R. H. Kim, D. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Raciukaitis, G.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Rode, A. V.

Rutkauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Sanchez, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Sawada, K.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[CrossRef] [PubMed]

Schmidt, O. G.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[CrossRef] [PubMed]

D. J. Thurmer, C. Deneke, Y. Mei, O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[CrossRef]

Schulze, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Shvedov, V. G.

Smilgevicius, V.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Smith, E. J.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Sonehara, T.

Stankevicius, E.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Sun, H.

S. Kawata, H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
[CrossRef]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takahashi, H.

Takei, K.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[CrossRef] [PubMed]

Takita, A.

H. Takahashi, S. Hasegawa, A. Takita, Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Thurmer, D. J.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[CrossRef] [PubMed]

D. J. Thurmer, C. Deneke, Y. Mei, O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[CrossRef]

Wang, L.

X. Yang, L. Wang, S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[CrossRef]

Yang, D.

K. Lee, R. H. Kim, D. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Yang, S.

X. Yang, L. Wang, S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[CrossRef]

Yang, X.

X. Yang, L. Wang, S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

D. J. Thurmer, C. Deneke, Y. Mei, O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

S. Kawata, H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
[CrossRef]

Biomed. Microdevices (1)

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

J. Micromech. Microeng. (1)

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[CrossRef]

Lab Chip (1)

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[CrossRef] [PubMed]

Mater. Lett. (1)

X. Yang, L. Wang, S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[CrossRef]

Nano Lett. (1)

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Prog. Polym. Sci. (1)

K. Lee, R. H. Kim, D. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The left is the diagrammatic sketch of generation process of AFL. The smaller circle is FL. r 0 is the shift distance of FL, which is the same to the radius of FL here. r 1 is the radius of AFL. Red arrow shows the moving direction of FL. And the right is the obtained AFL.

Fig. 2
Fig. 2

Simulation results of illuminated field in sagittal plane at (a) z = 0.95f, (b) z = f, (c) z = 1.05f and (d) meridian plane containing the optical axis; (e) intensity distribution at focal plane.

Fig. 3
Fig. 3

Diagram of the laser system. H0 is a half wave plate. P0 is a Glan laserprim. AFL is loaded on SLM. A high-pass filter is placed at the focus of AFL to block the center beam.

Fig. 4
Fig. 4

SEM images of tube array fabricated using the described method with a 100x objective. (a) Arrays captured at 45°; (b) arrays captured at top view; (c) SEM image of an individual structure of array; (d) top view of another individual structure. Scale bars are 40μm in (a), (b) and 10μm in (c), (d).

Fig. 5
Fig. 5

SEM images of a 3D tube pattern fabricated using AFL.

Fig. 6
Fig. 6

SEM images of tube array with various radius. (a) Image captured at 45°; (b) image captured at 0°; (c) the AFLs used in fabricating tube with different radius. Scale bars are 20μm.

Tables (1)

Tables Icon

Table 1 Simulation results of 5 AFLs with different 0 order zone width

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E( x,y,z )= exp( ikz ) iλz E( x 1 , y 1 )exp{ ik 2z [ ( x- x 1 ) 2 + ( y- y 1 ) 2 ] } d x 1 d y 1

Metrics