Abstract

We theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (TFWHM=3.5ps, P0=20kW, νR=30MHz, and Pavg=2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.9–4.1μm SC at the −30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λZDW) significantly below the 4.1μm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55μm. This allows the MIR solitons in the ZBLAN fiber SC to couple into anomalous dispersion in the chalcogenide fiber and further redshift out to the fiber loss edge at around 9μm. The final 0.9–9μm SC covers over 3 octaves in the MIR with around 15mW of power converted into the 6–9μm range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wartewig, R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 11441170 (2005).
    [CrossRef]
  2. A. Seddon, “Mid-Infrared (IR) - a hot topic: The potential for using mid-IR light for non-invasive early detection of skin cander in vivo,” Phys. Status Solidi B 250, 1020–1027 (2013).
    [CrossRef]
  3. R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Moseback, H. Bittner, T. Eisenmann, “Mobile fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994).
    [CrossRef] [PubMed]
  4. A. Mukherjee, S. Von der Porten, C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. (2010).
    [CrossRef] [PubMed]
  5. M. Razeghi, S. Slivken, Y. Bai, S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 4247 (2008).
  6. M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).
  7. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  8. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
    [CrossRef] [PubMed]
  9. C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
    [CrossRef]
  10. Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
    [CrossRef]
  11. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, S. R. Keiding, “Supercontinuum-broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
    [CrossRef]
  12. P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.
  13. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
  14. NP Photonics Inc., “Tellurite based Mid-infrared Supercontinuum sources,” Online at www.npphotonics.com (2013).
  15. C. A. Michaels, T. Masiello, P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538543 (2009).
    [CrossRef]
  16. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [CrossRef] [PubMed]
  17. J. Swiderski, M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
    [CrossRef]
  18. V. Shiryaev, M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [CrossRef]
  19. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [CrossRef]
  20. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As22Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
    [CrossRef] [PubMed]
  21. R. R. Gattass, L. B. Shaw, V. Q. Nguyena, P. C. Purezaa, I. D. Aggarwal, J. S. Sangheraa, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol.18(2012).
  22. W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
    [CrossRef]
  23. C. Wei, X. Zhu, R. A. Norwood, F. Song, N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
    [CrossRef]
  24. M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Express 3, 1647–1657 (2013).
    [CrossRef]
  25. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
    [CrossRef]
  26. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
    [CrossRef]
  27. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011).
    [CrossRef] [PubMed]
  28. C. Hagen, J. Walewski, S. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
    [CrossRef]
  29. O.P. Kulkarni, V.V. Alexander, M. Kumar, M.J. Freeman, M.N. Islam, F.L. Terry, M. Neelakandan, A. Chan, “Supercontinuum generation from 1.9 to 4.5m in ZBLAN fiber with high average power generation beyond 3.8m using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011).
    [CrossRef]
  30. J. Geng, Q. Wang, S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834840 (2012).
    [CrossRef]
  31. AdValue Photonics Fiber Lasers, “Two-micron thulium-doped fiber lasers achieve 10 kW peak power (feature article in Laser Focus World Feb. 2013 issue),” Online at http://www.advaluephotonics.com/ (2013).
  32. F. Gan, “Optical properties of fluoride glasses: a review,” Journal of non-crystalline solids 184, 9–20 (1995).
    [CrossRef]
  33. FiberLabs Inc., “Fluoride fibers,” Online at http://www.fiberlabs-inc.com/ (2013).
  34. Amorphous Materials Inc., “Amtir-2,” Online at http://www.amorphousmaterials.com/ (2013).
  35. L. Brilland, D. Méchin, “Loss measurements of a 20 μm As2Se3 grapefruit fiber,” Private communication, 2013.
  36. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
    [CrossRef]
  37. I. Kubat, C. S. Agger, P. M. Moselund, O. Bang, “Mid-infrared supercontinuum generation to 4.5um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 and 1550nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
    [CrossRef]
  38. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, F. S. G. Renversez, M. E. Amraoui, J. L. Adam, T. Chartier, D. Méchin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18, 26647–26654 (2010).
    [CrossRef] [PubMed]
  39. J.-L. Adam, J. Trolès, L. Brilland, “Low-loss mid-ir microstructured optical fibers,” in “Optical Fiber Communication Conference,” (2012), p. OM3D.2.
  40. J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
    [CrossRef]
  41. M. D. Nielsen, G. Vienne, J. R. Folkenberg, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238 (2003).
    [CrossRef] [PubMed]
  42. N. A. Mortensen, J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt. A: Pure Appl. Opt. 5, 163–167 (2003).
    [CrossRef]
  43. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
    [CrossRef]
  44. B. Ung, M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
    [CrossRef] [PubMed]
  45. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [CrossRef]
  46. M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE8307, 83070N–83070N–16.
  47. J. Sanghera, I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” Journal of Non-Crystalline Solids 256–257, 6–16 (1999).
    [CrossRef]

2013 (10)

A. Seddon, “Mid-Infrared (IR) - a hot topic: The potential for using mid-IR light for non-invasive early detection of skin cander in vivo,” Phys. Status Solidi B 250, 1020–1027 (2013).
[CrossRef]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

J. Swiderski, M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[CrossRef]

V. Shiryaev, M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[CrossRef]

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
[CrossRef]

C. Wei, X. Zhu, R. A. Norwood, F. Song, N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
[CrossRef]

M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Express 3, 1647–1657 (2013).
[CrossRef]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

I. Kubat, C. S. Agger, P. M. Moselund, O. Bang, “Mid-infrared supercontinuum generation to 4.5um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 and 1550nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[CrossRef]

2012 (4)

J. Geng, Q. Wang, S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834840 (2012).
[CrossRef]

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (3)

2009 (1)

C. A. Michaels, T. Masiello, P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538543 (2009).
[CrossRef]

2008 (2)

M. Razeghi, S. Slivken, Y. Bai, S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 4247 (2008).

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

2007 (1)

2006 (2)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

C. Hagen, J. Walewski, S. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

2005 (2)

S. Wartewig, R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 11441170 (2005).
[CrossRef]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

2004 (1)

2003 (2)

M. D. Nielsen, G. Vienne, J. R. Folkenberg, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238 (2003).
[CrossRef] [PubMed]

N. A. Mortensen, J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt. A: Pure Appl. Opt. 5, 163–167 (2003).
[CrossRef]

1999 (1)

J. Sanghera, I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” Journal of Non-Crystalline Solids 256–257, 6–16 (1999).
[CrossRef]

1995 (1)

F. Gan, “Optical properties of fluoride glasses: a review,” Journal of non-crystalline solids 184, 9–20 (1995).
[CrossRef]

1994 (1)

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[CrossRef]

Adam, J. L.

Adam, J.-L.

J.-L. Adam, J. Trolès, L. Brilland, “Low-loss mid-ir microstructured optical fibers,” in “Optical Fiber Communication Conference,” (2012), p. OM3D.2.

Aggarwal, I.

J. Sanghera, I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” Journal of Non-Crystalline Solids 256–257, 6–16 (1999).
[CrossRef]

Aggarwal, I. D.

Agger, C.

Agger, C. S.

Alexander, V.V.

Amraoui, M. E.

Arnone, D.

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

Bache, M.

M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Express 3, 1647–1657 (2013).
[CrossRef]

Bai, Y.

M. Razeghi, S. Slivken, Y. Bai, S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 4247 (2008).

Bang, O.

Bautzer, W.

Birks, T. A.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

Bittner, H.

Brambilla, G.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Brilland, L.

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, F. S. G. Renversez, M. E. Amraoui, J. L. Adam, T. Chartier, D. Méchin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18, 26647–26654 (2010).
[CrossRef] [PubMed]

J.-L. Adam, J. Trolès, L. Brilland, “Low-loss mid-ir microstructured optical fibers,” in “Optical Fiber Communication Conference,” (2012), p. OM3D.2.

L. Brilland, D. Méchin, “Loss measurements of a 20 μm As2Se3 grapefruit fiber,” Private communication, 2013.

Caffey, D.

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

Calvez, L.

Canat, G.

Chan, A.

Chartier, T.

Chaudhari, C.

Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
[CrossRef]

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

Cheng, M.-Y.

Choi, D.-Y.

Chu, P. M.

C. A. Michaels, T. Masiello, P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538543 (2009).
[CrossRef]

Churbanov, M.

V. Shiryaev, M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Coulombier, Q.

Couny, F.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

Crivello, S.

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

Dam, J. S.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.

Darvish, S. R.

M. Razeghi, S. Slivken, Y. Bai, S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 4247 (2008).

Day, T.

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

Debbarma, S.

Dudley, J. M.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Duhant, M.

Dupont, S.

Eisenmann, T.

Feng, X.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Folkenberg, J. R.

N. A. Mortensen, J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt. A: Pure Appl. Opt. 5, 163–167 (2003).
[CrossRef]

M. D. Nielsen, G. Vienne, J. R. Folkenberg, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238 (2003).
[CrossRef] [PubMed]

Fred, J.

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef] [PubMed]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
[CrossRef]

Freeman, M. J.

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
[CrossRef]

Freeman, M.J.

Gai, X.

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

Galvanauskas, A.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” Journal of non-crystalline solids 184, 9–20 (1995).
[CrossRef]

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Q. Nguyena, P. C. Purezaa, I. D. Aggarwal, J. S. Sangheraa, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol.18(2012).

Geng, J.

J. Geng, Q. Wang, S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834840 (2012).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Guo, H.

M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Express 3, 1647–1657 (2013).
[CrossRef]

Hagen, C.

C. Hagen, J. Walewski, S. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Haus, R.

Hegde, R. S.

Heidt, A. M.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Heland, J.

Hodelin, J.

Horak, P.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Hu, J.

Ibsen, M.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Islam, M. N.

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef] [PubMed]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
[CrossRef]

Islam, M.N.

Jiang, S.

J. Geng, Q. Wang, S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834840 (2012).
[CrossRef]

Keiding, S. R.

Kito, C.

Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
[CrossRef]

Knight, J. C.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

Kubat, I.

Kulkarni, O.P.

Kumar, M.

Leick, L.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.

Lenz, G.

Liao, M.

Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
[CrossRef]

Loh, W. H.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Luther-Davies, B.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

Lyngsø, J. K.

Ma, P.

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

Madden, S.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[CrossRef]

Masiello, T.

C. A. Michaels, T. Masiello, P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538543 (2009).
[CrossRef]

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
[CrossRef]

Méchin, D.

Menyuk, C. R.

Michaels, C. A.

C. A. Michaels, T. Masiello, P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538543 (2009).
[CrossRef]

Michalska, M.

J. Swiderski, M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[CrossRef]

Mortensen, N. A.

N. A. Mortensen, J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt. A: Pure Appl. Opt. 5, 163–167 (2003).
[CrossRef]

Moseback, H.

Moselund, P.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.

Moselund, P. M.

I. Kubat, C. S. Agger, P. M. Moselund, O. Bang, “Mid-infrared supercontinuum generation to 4.5um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 and 1550nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, S. R. Keiding, “Supercontinuum-broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Mukherjee, A.

A. Mukherjee, S. Von der Porten, C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. (2010).
[CrossRef] [PubMed]

Neelakandan, M.

Neubert, R. H. H.

S. Wartewig, R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 11441170 (2005).
[CrossRef]

Nguyen, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

Nguyena, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyena, P. C. Purezaa, I. D. Aggarwal, J. S. Sangheraa, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol.18(2012).

Nielsen, M. D.

Norwood, R. A.

Ohishi, Y.

Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
[CrossRef]

Patel, C. K. N.

A. Mukherjee, S. Von der Porten, C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. (2010).
[CrossRef] [PubMed]

Pedersen, C.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.

Petersen, C.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef] [PubMed]

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, S. R. Keiding, “Supercontinuum-broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

Petropoulos, P.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Petrovich, M.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Peyghambarian, N.

Poletti, F.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Ponzo, G.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Price, J. H.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Pritchett, R.

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

Purezaa, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyena, P. C. Purezaa, I. D. Aggarwal, J. S. Sangheraa, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol.18(2012).

Pushkarsky, M.

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

Qin, Q.

Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
[CrossRef]

Razeghi, M.

M. Razeghi, S. Slivken, Y. Bai, S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 4247 (2008).

Renard, W.

Renversez, F. S. G.

Rhonehouse, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

Richardson, D. J.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Roberts, P. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

Russell, P. St. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

Rutt, H. N.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Saad, M.

M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE8307, 83070N–83070N–16.

Sabert, H.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

Sanders, S.

C. Hagen, J. Walewski, S. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Sanghera, J.

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[CrossRef]

J. Sanghera, I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” Journal of Non-Crystalline Solids 256–257, 6–16 (1999).
[CrossRef]

Sanghera, J. S.

Sangheraa, J. S.

R. R. Gattass, L. B. Shaw, V. Q. Nguyena, P. C. Purezaa, I. D. Aggarwal, J. S. Sangheraa, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol.18(2012).

Schäfer, K.

Seddon, A.

A. Seddon, “Mid-Infrared (IR) - a hot topic: The potential for using mid-IR light for non-invasive early detection of skin cander in vivo,” Phys. Status Solidi B 250, 1020–1027 (2013).
[CrossRef]

Shaw, L. B.

Shi, J.

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Shiryaev, V.

V. Shiryaev, M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[CrossRef]

Skorobogatiy, M.

Slivken, S.

M. Razeghi, S. Slivken, Y. Bai, S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 4247 (2008).

Slusher, R. E.

Smith, C.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

Song, F.

Sørensen, S. T.

Steffensen, H.

Suzuku, K.

Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
[CrossRef]

Swiderski, J.

J. Swiderski, M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[CrossRef]

Terry, F.L.

Terry, L.

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef] [PubMed]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
[CrossRef]

Thapa, R.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

Thøgersen, J.

Thomsen, C. L.

Tidemand-Lichtenberg, P.

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.

Toupin, P.

Troles, J.

Trolès, J.

J.-L. Adam, J. Trolès, L. Brilland, “Low-loss mid-ir microstructured optical fibers,” in “Optical Fiber Communication Conference,” (2012), p. OM3D.2.

Ung, B.

Vienne, G.

Von der Porten, S.

A. Mukherjee, S. Von der Porten, C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. (2010).
[CrossRef] [PubMed]

Walewski, J.

C. Hagen, J. Walewski, S. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Wang, Q.

J. Geng, Q. Wang, S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834840 (2012).
[CrossRef]

Wang, R.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

Wang, T.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

Wartewig, S.

S. Wartewig, R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 11441170 (2005).
[CrossRef]

Wei, C.

Weida, M.

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

Wiersma, K.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

Winful, H. G.

Xia, C.

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef] [PubMed]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
[CrossRef]

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
[CrossRef]

Yan, X.

Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
[CrossRef]

Yang, D.-Y. C. Z.

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

Yang, Z.

Yu, Y.

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

Yuan, W.

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
[CrossRef]

Zhou, B.

M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Express 3, 1647–1657 (2013).
[CrossRef]

Zhu, X.

Zong, J.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

Adv. Drug Delivery Rev. (1)

S. Wartewig, R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 11441170 (2005).
[CrossRef]

Appl. Opt. (2)

R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Moseback, H. Bittner, T. Eisenmann, “Mobile fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994).
[CrossRef] [PubMed]

J. Geng, Q. Wang, S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834840 (2012).
[CrossRef]

Appl. Spectrosc. (1)

C. A. Michaels, T. Masiello, P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538543 (2009).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Hagen, J. Walewski, S. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

V. Shiryaev, M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

N. A. Mortensen, J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt. A: Pure Appl. Opt. 5, 163–167 (2003).
[CrossRef]

J. Opt. Soc. Am. B (4)

Journal of non-crystalline solids (1)

F. Gan, “Optical properties of fluoride glasses: a review,” Journal of non-crystalline solids 184, 9–20 (1995).
[CrossRef]

J. Sanghera, I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” Journal of Non-Crystalline Solids 256–257, 6–16 (1999).
[CrossRef]

Laser Phys. Lett. (2)

J. Swiderski, M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[CrossRef]

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013).
[CrossRef]

Opt. Express (9)

C. Wei, X. Zhu, R. A. Norwood, F. Song, N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013).
[CrossRef]

M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Express 3, 1647–1657 (2013).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[CrossRef] [PubMed]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As22Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007).
[CrossRef] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, F. S. G. Renversez, M. E. Amraoui, J. L. Adam, T. Chartier, D. Méchin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18, 26647–26654 (2010).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005).
[CrossRef]

B. Ung, M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
[CrossRef] [PubMed]

Opt. Fiber. Technol. (1)

J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012).
[CrossRef]

Opt. Lett. (2)

Opt. Mat. Express (1)

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013).
[CrossRef]

Opt. Photon. News (1)

M. Razeghi, S. Slivken, Y. Bai, S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 4247 (2008).

Phys. Status Solidi B (1)

A. Seddon, “Mid-Infrared (IR) - a hot topic: The potential for using mid-IR light for non-invasive early detection of skin cander in vivo,” Phys. Status Solidi B 250, 1020–1027 (2013).
[CrossRef]

Proc. SPIE (2)

M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (13)

NP Photonics Inc., “Tellurite based Mid-infrared Supercontinuum sources,” Online at www.npphotonics.com (2013).

R. R. Gattass, L. B. Shaw, V. Q. Nguyena, P. C. Purezaa, I. D. Aggarwal, J. S. Sangheraa, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol.18(2012).

A. Mukherjee, S. Von der Porten, C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. (2010).
[CrossRef] [PubMed]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009).
[CrossRef]

Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009).
[CrossRef]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, S. R. Keiding, “Supercontinuum-broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012).
[CrossRef]

P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.

FiberLabs Inc., “Fluoride fibers,” Online at http://www.fiberlabs-inc.com/ (2013).

Amorphous Materials Inc., “Amtir-2,” Online at http://www.amorphousmaterials.com/ (2013).

L. Brilland, D. Méchin, “Loss measurements of a 20 μm As2Se3 grapefruit fiber,” Private communication, 2013.

AdValue Photonics Fiber Lasers, “Two-micron thulium-doped fiber lasers achieve 10 kW peak power (feature article in Laser Focus World Feb. 2013 issue),” Online at http://www.advaluephotonics.com/ (2013).

J.-L. Adam, J. Trolès, L. Brilland, “Low-loss mid-ir microstructured optical fibers,” in “Optical Fiber Communication Conference,” (2012), p. OM3D.2.

M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE8307, 83070N–83070N–16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup of the concatenated MIR SC source. (a) The Tm laser (TFWHM=3.5ps, P0=20kW, νr=30MHz, Pavg=2W) was coupled to a ZBLAN step-index fiber with a coupling loss of 3dB, where it generated a 0.9–4.1μm SC (−30dB level). The output SC was further coupled into a CHALC As2Se3 MOF with a coupling loss of 6dB, in which it generated a 0.9–9μm SC (−30dB level). The spectrum above shows how a single pulse undergoes spectral broadening through the setup. (b) Dispersion for a ZBLAN fiber with core diameter of 5.7μm and NA=0.30 based on material dispersion by F. Gan [32] and measured loss provided by FiberLabs Inc., Japan [33]. (c) Optical properties of the chalcogenide grapefruit MOF with core diameter of 5 (solid) and 20μm (dashed) based on As2Se3 material dispersion by Amorphous Materials Inc. [34] and loss for the fiber of the same material and design provided by Perfos [35].

Fig. 2
Fig. 2

(a) Spectrogram with the spectrum below of a single pulse SC at the end of 10 m of ZBLAN fiber, and (b) at the end of +10 cm of the 5μm core diameter CHALC MOF. The black solid and dashed lines show the total group delay β1L for the ZBLAN and CHALC fibers, respectively. (c) Time trace of the 3.5–4.5μm part of the ZBLAN SC, and (d) of the 3.5–9μm part of the CHALC MOF SC. (e) Ten pulse ensemble averaged IR edge (−30dB level) (red) and the accumulated IR power (black) in the 3–5μm range of the ZBLAN SC. (f) The same as (e) for the CHALC MOF SC where the power was evaluated in the 6–9μm range.

Fig. 3
Fig. 3

Comparison between ten pulse averaged SC spectrum of 10m of the ZBLAN fluoride fiber and +10cm of concatenated CHALC MOF having 5μm and 20μm core diameter. The vertical blue and green dashed lines are λZDW of the 5 and 20μm CHALC MOFs, respectively.

Metrics