Abstract

Broadband Radio frequency (RF) photonic front-ends are one of the vital applications of the microwave photonics. A tunable and broadband RF photonic front-end integrating with the optoelectronic oscillator (OEO) based local oscillator has been proposed and experimentally demonstrated, in which only one phase modulator (PM) is employed thanks to the characteristic of the PM. The silicon-on-insulator based narrow-bandwidth band-pass filter is introduced for signal processing. The application condition of the proposed RF photonic front-end has been discussed and the performance of the front-end has also been measured. The SFDR at a frequency of about 7.02 GHz is measured to be 88.6 dB-Hz2/3.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
    [Crossref]
  4. R. B. Waterhouse and D. Novak, “Integrated Antenna/Electro-Optic Modulator for RF Photonic Front-Ends,” Proceedings of 2011 International Microwave Symposium, Baltimore, MD, June 2011.
    [Crossref]
  5. J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009).
    [Crossref]
  6. V. S. Ilchenko, A. A. Savchenkov, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Photonic Front-end for Millimeter Wave Applications,” Proc. of 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 1–2, November 2008.
  7. A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
    [Crossref]
  8. T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
    [Crossref]
  9. S. A. Pappert and B. Krantz, “RF photonics for radar front-ends,” in Proc. IEEE Radar Conf., Boston, MA, 965–970 (2007).
  10. X. Guan and A. Hajimiri, “A 24-GHz CMOS Front-End,” IEEE J. Solid-State Circuits 39(2), 368–373 (2004).
    [Crossref]
  11. R. T. Logan and E. Gertel, “Millimeter-wave photonic downconvertors: Theory and demonstrations,” Proc. SPIE 2560, 58–69 (1995).
    [Crossref]
  12. A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(16), 2394–2401 (2011).
    [Crossref]
  13. B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3(1), 1–12 (2011).
    [Crossref]
  14. L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  15. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38(5), 655–657 (2013).
    [Crossref] [PubMed]
  16. D. Zhu, S. Pan, S. Cai, and D. Ben, “High-Performance Photonic Microwave Downconverter Based on a Frequency-Doubling Optoelectronic Oscillator,” J. Lightwave Technol. 30(18), 3036–3042 (2012).
    [Crossref]
  17. W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Opt. Fiber Commun. Conf. Tech. Dig., 358–359 (1997).
    [Crossref]
  18. H. Yu, M. Chen, P. Li, S. Yang, H. Chen, and S. Xie, “Silicon-on-insulator narrow-passband filter based on cascaded MZIs incorporating enhanced FSR for downconverting analog photonic links,” Opt. Express 21(6), 6749–6755 (2013).
    [Crossref] [PubMed]
  19. X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
    [Crossref]

2013 (2)

2012 (2)

X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

D. Zhu, S. Pan, S. Cai, and D. Ben, “High-Performance Photonic Microwave Downconverter Based on a Frequency-Doubling Optoelectronic Oscillator,” J. Lightwave Technol. 30(18), 3036–3042 (2012).
[Crossref]

2011 (4)

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3(1), 1–12 (2011).
[Crossref]

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

2009 (2)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[Crossref]

2004 (1)

X. Guan and A. Hajimiri, “A 24-GHz CMOS Front-End,” IEEE J. Solid-State Circuits 39(2), 368–373 (2004).
[Crossref]

1995 (1)

R. T. Logan and E. Gertel, “Millimeter-wave photonic downconvertors: Theory and demonstrations,” Proc. SPIE 2560, 58–69 (1995).
[Crossref]

Agarwal, A.

Ayazi, A.

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[Crossref]

Banwell, T.

Ben, D.

Byrd, J.

A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
[Crossref]

Cai, S.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, H.

Chen, M.

Chen, R. T.

X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Chen, Z.

Chou, J.

Clark, T. R.

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

Conway, J. A.

Gertel, E.

R. T. Logan and E. Gertel, “Millimeter-wave photonic downconvertors: Theory and demonstrations,” Proc. SPIE 2560, 58–69 (1995).
[Crossref]

Guan, X.

X. Guan and A. Hajimiri, “A 24-GHz CMOS Front-End,” IEEE J. Solid-State Circuits 39(2), 368–373 (2004).
[Crossref]

Guo, P.

Haas, B. M.

B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3(1), 1–12 (2011).
[Crossref]

Hajimiri, A.

X. Guan and A. Hajimiri, “A 24-GHz CMOS Front-End,” IEEE J. Solid-State Circuits 39(2), 368–373 (2004).
[Crossref]

Hosseini, A.

X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Houshmand, B.

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[Crossref]

Hsu, R. C. J.

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[Crossref]

Hu, W.

Ilchenko, V. S.

A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
[Crossref]

Jalali, B.

J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009).
[Crossref]

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[Crossref]

Koonath, P.

A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
[Crossref]

Krantz, B.

S. A. Pappert and B. Krantz, “RF photonics for radar front-ends,” in Proc. IEEE Radar Conf., Boston, MA, 965–970 (2007).

Lee, B.

X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Li, P.

Lin, C. Y.

X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Logan, R. T.

R. T. Logan and E. Gertel, “Millimeter-wave photonic downconvertors: Theory and demonstrations,” Proc. SPIE 2560, 58–69 (1995).
[Crossref]

Lutes, G.

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Opt. Fiber Commun. Conf. Tech. Dig., 358–359 (1997).
[Crossref]

Maleki, L.

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Opt. Fiber Commun. Conf. Tech. Dig., 358–359 (1997).
[Crossref]

A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
[Crossref]

Matsko, A. B.

A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
[Crossref]

Murphy, T. E.

B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3(1), 1–12 (2011).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

R. B. Waterhouse and D. Novak, “Integrated Antenna/Electro-Optic Modulator for RF Photonic Front-Ends,” Proceedings of 2011 International Microwave Symposium, Baltimore, MD, June 2011.
[Crossref]

Pan, S.

Pappert, S. A.

S. A. Pappert and B. Krantz, “RF photonics for radar front-ends,” in Proc. IEEE Radar Conf., Boston, MA, 965–970 (2007).

Savchenkov, A. A.

A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
[Crossref]

Sefler, G. A.

Seidel, D.

A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
[Crossref]

Shieh, W.

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Opt. Fiber Commun. Conf. Tech. Dig., 358–359 (1997).
[Crossref]

Sun, T.

Valley, G. C.

Wang, A. X.

X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Waterhouse, R.

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

Waterhouse, R. B.

R. B. Waterhouse and D. Novak, “Integrated Antenna/Electro-Optic Modulator for RF Photonic Front-Ends,” Proceedings of 2011 International Microwave Symposium, Baltimore, MD, June 2011.
[Crossref]

Woodward, T. K.

Xie, S.

Xie, X.

Yang, S.

Yao, J.

Yao, S. X.

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Opt. Fiber Commun. Conf. Tech. Dig., 358–359 (1997).
[Crossref]

Yu, H.

Zhang, C.

Zhang, X.

X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

Zhu, D.

Zhu, L.

Zhu, X.

IEEE J. Solid-State Circuits (1)

X. Guan and A. Hajimiri, “A 24-GHz CMOS Front-End,” IEEE J. Solid-State Circuits 39(2), 368–373 (2004).
[Crossref]

IEEE Microw. Mag. (1)

T. R. Clark and R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011).
[Crossref]

IEEE Photon. J. (2)

B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3(1), 1–12 (2011).
[Crossref]

X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (3)

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

R. T. Logan and E. Gertel, “Millimeter-wave photonic downconvertors: Theory and demonstrations,” Proc. SPIE 2560, 58–69 (1995).
[Crossref]

Other (5)

S. A. Pappert and B. Krantz, “RF photonics for radar front-ends,” in Proc. IEEE Radar Conf., Boston, MA, 965–970 (2007).

R. B. Waterhouse and D. Novak, “Integrated Antenna/Electro-Optic Modulator for RF Photonic Front-Ends,” Proceedings of 2011 International Microwave Symposium, Baltimore, MD, June 2011.
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Photonic Front-end for Millimeter Wave Applications,” Proc. of 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 1–2, November 2008.

A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, and L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009.
[Crossref]

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Opt. Fiber Commun. Conf. Tech. Dig., 358–359 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Notional diagram of simplex radar system consisting of a Digital-to-Analog Converter (DAC), Analog-to-Digital Converter (ADC), transmitter and the proposed RF photonic front-end. The proposed RF photonic front-end contains the mixing process with a feedback loop to generate the LO, a signal processor and the photo-detector (PD) based down-converter.

Fig. 2
Fig. 2

(a) Schematic diagram of the simple photonic front-end integrating with the OEO based LO for mixing and signal processor, (b) three rounds of the OEO loop. The alternative between the dashed and the solid arrow line of IF means the generation of new components and the old is vanished.

Fig. 3
Fig. 3

(a) The electric spectrum of the OEO-based LO (b) the phase noise of the LO at frequency of 5.5 GHz, 6.128 GHz and 7.227 GHz.

Fig. 4
Fig. 4

Experimental results of the proposed RF photonic front-end integrating with the LO at a frequency of about 7.227 GHz. The two tone signal is centered at 7.02 GHz with a separation of about 10 MHz. (a) electrical spectrum of down-converted IF signal, (b) the measured SFDR.

Fig. 5
Fig. 5

The operation frequency range of the RF input signal at different input power in the proposed RF photonic front-end.

Metrics