M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[Crossref]
R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[Crossref]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[Crossref]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[Crossref]
O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[Crossref]
H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]
M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]
X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[Crossref]
X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[Crossref]
[PubMed]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[Crossref]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[Crossref]
O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[Crossref]
O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]
M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[Crossref]
M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[Crossref]
H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[Crossref]
J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]
J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]
R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[Crossref]
M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[Crossref]
R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
[Crossref]
[PubMed]
J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010).
[Crossref]
[PubMed]
J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34, 1738–1740 (2009).
[Crossref]
[PubMed]
X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34, 1198–1200 (2009).
[Crossref]
[PubMed]
X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 011911 (2009).
[Crossref]
J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
[Crossref]
[PubMed]
O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]
J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
[Crossref]
[PubMed]
S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[Crossref]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]
J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010).
[Crossref]
[PubMed]
X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 011911 (2009).
[Crossref]
J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34, 1738–1740 (2009).
[Crossref]
[PubMed]
X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34, 1198–1200 (2009).
[Crossref]
[PubMed]
J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
[Crossref]
[PubMed]
S. Tong, J. Liu, J. Wan, and K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]
H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]
R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]
X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[Crossref]
X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[Crossref]
[PubMed]
J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[Crossref]
[PubMed]
R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
[Crossref]
[PubMed]
J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010).
[Crossref]
[PubMed]
J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34, 1738–1740 (2009).
[Crossref]
[PubMed]
X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34, 1198–1200 (2009).
[Crossref]
[PubMed]
X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 011911 (2009).
[Crossref]
J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
[Crossref]
[PubMed]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[Crossref]
X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[Crossref]
M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
M. Oxborrow, “Ex-house 2d finite-element simulation of the whispering-gallery modes of arbitrarily shaped axisymmetric electromagnetic resonators,” arXiv preprint quant-ph/0607156 (2006).
J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
[Crossref]
[PubMed]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]
E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[Crossref]
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[Crossref]
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[Crossref]
J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]
X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[Crossref]
X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[Crossref]
[PubMed]
J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[Crossref]
[PubMed]
J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[Crossref]
H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[Crossref]
R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]
M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[Crossref]
J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010).
[Crossref]
[PubMed]
X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 011911 (2009).
[Crossref]
J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34, 1738–1740 (2009).
[Crossref]
[PubMed]
X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34, 1198–1200 (2009).
[Crossref]
[PubMed]
J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
[Crossref]
[PubMed]
H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[Crossref]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]
S. Tong, J. Liu, J. Wan, and K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[Crossref]
W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]
X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[Crossref]
X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[Crossref]
[PubMed]
O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]
M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[Crossref]
X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[Crossref]
X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[Crossref]
[PubMed]
J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[Crossref]
[PubMed]
J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[Crossref]
H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[Crossref]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[Crossref]
R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[Crossref]
S. Tong, J. Liu, J. Wan, and K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[Crossref]
S. Tong, J. Liu, J. Wan, and K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]
J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
[Crossref]
[PubMed]
X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[Crossref]
J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[Crossref]
[PubMed]
J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[Crossref]
X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[Crossref]
X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[Crossref]
[PubMed]
S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]
M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[Crossref]
[PubMed]
S. Koseki, B. Zhang, K. De Greve, and Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[Crossref]
M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]
C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, and Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[Crossref]