Abstract

Microdisk integrated with a bus waveguide is fabricated on silicon-on-insulator substrate containing Ge self-assembled quantum dots as active medium. The device is demonstrated to be operated as both light-emitting diode and photodetector. At forward bias, carriers are injected into the microdisk and light emission at 1.45–1.6 μm is extracted through the waveguide via microdisk-waveguide coupling. Sharp resonant peaks with Q-factor as high as 1350 are obtained in the electroluminescence spectra, corresponding to whispering gallery modes of the microdisk. At reverse bias, the device functions as a resonant cavity enhanced photodetector with wavelength-selective photo-response. The photo-current at resonant wavelength of 1533.65 nm is 50 times larger than that at non-resonant wavelength. The dark current density of the photodetector is as low as 0.29 mA/cm2 up to −10 V bias and the peak responsivity is 5.645 mA/W.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [CrossRef]
  2. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
    [CrossRef]
  3. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
    [CrossRef] [PubMed]
  4. X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 011911 (2009).
    [CrossRef]
  5. X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34, 1198–1200 (2009).
    [CrossRef] [PubMed]
  6. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009).
    [CrossRef] [PubMed]
  7. J. Liu, X. Sun, L. C. Kimerling, J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34, 1738–1740 (2009).
    [CrossRef] [PubMed]
  8. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010).
    [CrossRef] [PubMed]
  9. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
    [CrossRef] [PubMed]
  10. R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
    [CrossRef]
  11. H. Sunamura, N. Usami, Y. Shiraki, S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
    [CrossRef]
  12. W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
    [CrossRef]
  13. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  14. J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [CrossRef]
  15. J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
    [CrossRef]
  16. M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
    [CrossRef] [PubMed]
  17. X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
    [CrossRef]
  18. J. Xia, Y. Takeda, N. Usami, T. Maruizumi, Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
    [CrossRef] [PubMed]
  19. X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
    [CrossRef] [PubMed]
  20. S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
    [CrossRef]
  21. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M. J. Paniccia, “31 Ghz Ge n–i–p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15, 13965–13971 (2007).
    [CrossRef] [PubMed]
  22. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).
    [CrossRef]
  23. M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
    [CrossRef]
  24. S. Tong, J. Liu, J. Wan, K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
    [CrossRef]
  25. M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
    [CrossRef]
  26. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
    [CrossRef]
  27. C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
    [CrossRef]
  28. H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
    [CrossRef]
  29. J. Doylend, P. Jessop, A. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18, 14671–14678 (2010).
    [CrossRef] [PubMed]
  30. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
    [CrossRef]
  31. M. Oxborrow, “Ex-house 2d finite-element simulation of the whispering-gallery modes of arbitrarily shaped axisymmetric electromagnetic resonators,” arXiv preprint quant-ph/0607156 (2006).

2012 (3)

2011 (1)

2010 (3)

2009 (6)

X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34, 1198–1200 (2009).
[CrossRef] [PubMed]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009).
[CrossRef] [PubMed]

J. Liu, X. Sun, L. C. Kimerling, J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34, 1738–1740 (2009).
[CrossRef] [PubMed]

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (3)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

2005 (1)

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[CrossRef]

2004 (1)

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

2003 (1)

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

2002 (3)

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

S. Tong, J. Liu, J. Wan, K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

1998 (1)

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

1995 (3)

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

H. Sunamura, N. Usami, Y. Shiraki, S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[CrossRef]

M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

1946 (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Albonesi, D. H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

Apetz, R.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Baets, R.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Bensahel, D.

M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[CrossRef] [PubMed]

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

Bessette, J. T.

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Boucaud, P.

M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[CrossRef] [PubMed]

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

Cai, Y.

Camacho-Aguilera, R.

Camacho-Aguilera, R. E.

Campidelli, Y.

M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[CrossRef] [PubMed]

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

Cannon, D. D.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[CrossRef]

Chang, H. S.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Chang, W.-H.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Checoury, X.

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

Chen, H.

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

Chen, P. S.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Chen, W. Y.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Cheng, B.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Cheng, S.-L.

Chetrit, Y.

Chiba, T.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[CrossRef] [PubMed]

Chou, A. T.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Cohen, R.

Costard, E.

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

David, S.

Davids, P. S.

De Greve, K.

S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

DeRose, C. T.

Dieker, C.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Dosunmu, O. I.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[CrossRef]

Doylend, J.

El Kurdi, M.

Elkurdi, M.

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

Emsley, M. K.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[CrossRef]

Fauchet, P. M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

Fisher, M.

Friedman, E. G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

Fukatsu, S.

H. Sunamura, N. Usami, Y. Shiraki, S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[CrossRef]

Gayral, B.

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Gerard, J.

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Hartmann, A.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

Hsu, T. M.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Ikegami, Y.

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

Jessop, P.

Kermarrec, O.

M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[CrossRef] [PubMed]

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

Kimerling, L. C.

Knights, A.

Koch, T. L.

Koseki, S.

S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Lai, L. S.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Lee, S. W.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Legrand, B.

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Li, C.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Liu, J.

Lu, J.

Lu, S. C.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Luo, L.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Luo, X.

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

Luth, H.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Mao, R.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Maruizumi, T.

Michel, J.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Morse, M. M.

Nakata, Y.

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

Narusawa, S.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[CrossRef]

Nelson, N. A.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

Ngo, T.

Nishi, Y.

Oxborrow, M.

M. Oxborrow, “Ex-house 2d finite-element simulation of the whispering-gallery modes of arbitrarily shaped axisymmetric electromagnetic resonators,” arXiv preprint quant-ph/0607156 (2006).

Pan, D.

Paniccia, M. J.

Patel, N.

Pei, Z.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Poon, A. W.

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Romagnoli, M.

Rubin, D.

Sagnes, I.

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

Saint-Girons, G.

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

Saraswat, K.

Sarid, G.

Sauvage, S.

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

Sermage, B.

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Shambat, G.

Shi, W.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Shiraki, Y.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[CrossRef] [PubMed]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[CrossRef] [PubMed]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

H. Sunamura, N. Usami, Y. Shiraki, S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[CrossRef]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

Starbuck, A. L.

Strite, S.

M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Sun, X.

Sunamura, H.

H. Sunamura, N. Usami, Y. Shiraki, S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[CrossRef]

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Takeda, Y.

Thierry-Mieg, V.

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Tong, S.

S. Tong, J. Liu, J. Wan, K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[CrossRef]

Trotter, D. C.

Tsai, M.-J.

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

Tsuboi, T.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[CrossRef] [PubMed]

Unlu, M. S.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[CrossRef]

M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Usami, N.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[CrossRef] [PubMed]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[CrossRef] [PubMed]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

H. Sunamura, N. Usami, Y. Shiraki, S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Vescan, L.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

Vuckovic, J.

Wan, J.

S. Tong, J. Liu, J. Wan, K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[CrossRef]

Wang, K. L.

S. Tong, J. Liu, J. Wan, K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[CrossRef]

Wang, Q.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Wang, X.

Watts, M. R.

Xia, J.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[CrossRef]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[CrossRef] [PubMed]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

Xu, X.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[CrossRef]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[CrossRef] [PubMed]

Yamamoto, Y.

S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

Yin, T.

Yu, H.-Y.

Yu, J.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Zerounian, N.

Zhang, B.

S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

Zhao, L.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Zortman, W. A.

Zuo, Y.

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

Appl. Phys. Lett. (10)

X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995).
[CrossRef]

H. Sunamura, N. Usami, Y. Shiraki, S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995).
[CrossRef]

W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[CrossRef]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006).
[CrossRef]

S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009).
[CrossRef]

M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002).
[CrossRef]

S. Tong, J. Liu, J. Wan, K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002).
[CrossRef]

C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004).
[CrossRef]

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[CrossRef]

J. Appl. Phys. (1)

M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[CrossRef]

Opt. Express (9)

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
[CrossRef] [PubMed]

J. Doylend, P. Jessop, A. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18, 14671–14678 (2010).
[CrossRef] [PubMed]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007).
[CrossRef] [PubMed]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010).
[CrossRef] [PubMed]

X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012).
[CrossRef] [PubMed]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M. J. Paniccia, “31 Ghz Ge n–i–p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15, 13965–13971 (2007).
[CrossRef] [PubMed]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).
[CrossRef]

M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008).
[CrossRef] [PubMed]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (1)

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[CrossRef]

Other (1)

M. Oxborrow, “Ex-house 2d finite-element simulation of the whispering-gallery modes of arbitrarily shaped axisymmetric electromagnetic resonators,” arXiv preprint quant-ph/0607156 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Three-dimensional schematic diagram of the waveguide-integrated microdisk. (b) Cross-section view of the device along the center of the microdisk. (c) SEM image of a fabricated device.

Fig. 2
Fig. 2

I–V curve of the fabricated device.

Fig. 3
Fig. 3

(a) EL spectra of the device detected from the grating coupler under different injected currents. The EL intensity was offset by 40 for clear view. (b) Lorentz fitting of the strongest peak near 1.53 μm in the EL spectrum under 2 mA injected current.

Fig. 4
Fig. 4

(a) Comparison of optical transmission and EL spectra under 2 mA injected current. (b) Comparison of simulated resonant wavelengths of WGMs and experimental resonant wavelengths extracted from transmission spectrum without current injection. (c) and (d) are calculated electrical field intensity distributions for the TE0,46 and TE1,41 WGMs of the microdisk. The intensity plotted here is log10(|E|2/max{|E|2} + 10−2) so that one can easily see the leakage towards outside.

Fig. 5
Fig. 5

Comparison of optical transmission and photo-current spectra at input laser power of 1 mW and bias of −10 V.

Fig. 6
Fig. 6

(a) I–V curves of the photodetector at resonant wavelength of 1533.65 with and without laser input. (b) Photo-current at 1533.65 nm with different input laser power.

Metrics