Abstract

We report on a path-independent insertion-loss (PILOSS) 8 × 8 matrix switch based on Si-wire waveguides, which has a record-small footprint of 3.5 × 2.4 mm2. The PILOSS switch consists of 64 thermooptic Mach-Zehnder (MZ) switches and 49 low-crosstalk intersections. Each of the MZ switches and intersections employs directional couplers, which enable the composition of a low loss PILOSS switch. We demonstrate successful switching of digital-coherent 43-Gbps QPSK signal.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco Systems, Inc., “Visual networking index: Global mobile data traffic forecast update, 2012–2017,” http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html .
  2. S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
    [CrossRef]
  3. K. Ishii, J. Kurumida, S. Namiki, T. Hasama, H. Ishikawa, “Energy consumption and traffic scaling of dynamic optical path networks,” Proc. SPIE 8646, 86460A (2012).
    [CrossRef]
  4. T. Goh, A. Himeno, M. Okuno, H. Takahashi, K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol. 17(7), 1192–1199 (1999).
    [CrossRef]
  5. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2006), paper Tu.4.4.3.
    [CrossRef]
  6. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM2.
    [CrossRef]
  7. L. Chen, Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [CrossRef] [PubMed]
  8. M.-J. Kwack, T. Tanemura, A. Higo, Y. Nakano, “Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection,” Opt. Express 20(27), 28734–28741 (2012).
    [CrossRef] [PubMed]
  9. G. W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, H. Ishikawa, “Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch,” Opt. Express 21(6), 6889–6894 (2013).
    [CrossRef] [PubMed]
  10. S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
    [CrossRef]
  11. A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
    [CrossRef]
  12. K. Suzuki, H. C. Nguyen, T. Tamanuki, F. Shinobu, Y. Saito, Y. Sakai, T. Baba, “Slow-light-based variable symbol-rate silicon photonics DQPSK receiver,” Opt. Express 20(4), 4796–4804 (2012).
    [CrossRef] [PubMed]
  13. B. G. Lee, A. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. Kuchta, M. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. Shank, C. Schow, and Y. A. Vlasov, “Four- and eight-port photonic switches monolithically integrated with digital CMOS logic and driver circuits,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5C.3.
    [CrossRef]
  14. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [CrossRef] [PubMed]
  15. S.-H. Kim, Y. Shoji, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Polarization diversity 2×2 switch with silicon-wire waveguide,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2013), paper We.4.B.5.

2013 (1)

2012 (4)

2011 (1)

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

2010 (2)

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[CrossRef] [PubMed]

S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[CrossRef]

2007 (1)

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

1999 (1)

Abdalla, S.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Analui, B.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Assefa, S.

S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[CrossRef]

Baba, T.

Balmater, E.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Chen, L.

Chen, Y. K.

Chiba, T.

Cong, G. W.

Dan, S.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Fengnian, X.

S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[CrossRef]

Gloeckner, S.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Goh, T.

Green, W. M. J.

S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[CrossRef]

Guckenberger, D.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Harrison, M.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Hasama, T.

K. Ishii, J. Kurumida, S. Namiki, T. Hasama, H. Ishikawa, “Energy consumption and traffic scaling of dynamic optical path networks,” Proc. SPIE 8646, 86460A (2012).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[CrossRef] [PubMed]

Hattori, K.

Higo, A.

Himeno, A.

Igarashi, Y.

Ishii, K.

K. Ishii, J. Kurumida, S. Namiki, T. Hasama, H. Ishikawa, “Energy consumption and traffic scaling of dynamic optical path networks,” Proc. SPIE 8646, 86460A (2012).
[CrossRef]

Ishikawa, H.

G. W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, H. Ishikawa, “Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch,” Opt. Express 21(6), 6889–6894 (2013).
[CrossRef] [PubMed]

K. Ishii, J. Kurumida, S. Namiki, T. Hasama, H. Ishikawa, “Energy consumption and traffic scaling of dynamic optical path networks,” Proc. SPIE 8646, 86460A (2012).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[CrossRef] [PubMed]

Kawashima, H.

Kintaka, K.

Koumans, R. G. M. P.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Kucharski, D.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Kurosu, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Kurumida, J.

K. Ishii, J. Kurumida, S. Namiki, T. Hasama, H. Ishikawa, “Energy consumption and traffic scaling of dynamic optical path networks,” Proc. SPIE 8646, 86460A (2012).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Kuwatsuka, H.

Kwack, M.-J.

Masahara, M.

Matsukawa, T.

Mekis, A.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Mirsaidi, S.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Nakamura, M.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Nakano, Y.

Nakatogawa, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Namiki, S.

K. Ishii, J. Kurumida, S. Namiki, T. Hasama, H. Ishikawa, “Energy consumption and traffic scaling of dynamic optical path networks,” Proc. SPIE 8646, 86460A (2012).
[CrossRef]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Narasimha, A.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Nguyen, H. C.

Ohno, M.

Okuno, M.

Oyamada, K.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Pinguet, T.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Rylyakov, A. V.

S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[CrossRef]

Saito, Y.

Sakai, Y.

Schow, C. L.

S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[CrossRef]

Shinobu, F.

Shoji, Y.

Sleboda, T. J.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

Suda, S.

Suzuki, K.

Tadokoro, H.

Takahashi, H.

Tamanuki, T.

Tanemura, T.

Tanizawa, K.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

Vlasov, Y. A.

S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[CrossRef]

Yanagihara, M.

Yi, L.

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[CrossRef]

S. Assefa, X. Fengnian, W. M. J. Green, C. L. Schow, A. V. Rylyakov, Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[CrossRef]

IEEE J. Solid-State Circuits (1)

A. Narasimha, B. Analui, L. Yi, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, S. Dan, T. Pinguet, “A fully integrated 4 × 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (5)

Proc. SPIE (1)

K. Ishii, J. Kurumida, S. Namiki, T. Hasama, H. Ishikawa, “Energy consumption and traffic scaling of dynamic optical path networks,” Proc. SPIE 8646, 86460A (2012).
[CrossRef]

Other (5)

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2006), paper Tu.4.4.3.
[CrossRef]

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM2.
[CrossRef]

B. G. Lee, A. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. Kuchta, M. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. Shank, C. Schow, and Y. A. Vlasov, “Four- and eight-port photonic switches monolithically integrated with digital CMOS logic and driver circuits,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5C.3.
[CrossRef]

S.-H. Kim, Y. Shoji, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Polarization diversity 2×2 switch with silicon-wire waveguide,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2013), paper We.4.B.5.

Cisco Systems, Inc., “Visual networking index: Global mobile data traffic forecast update, 2012–2017,” http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Microscope image of fabricated Si PILOSS switch chip. (b) PILOSS switch chip on ceramic mount.

Fig. 2
Fig. 2

(a) Microscope image of test Mach-Zehnder switch placed on same chip of PILOSS switch. (b) Transmission spectrum in cross state. (c) Transmission spectrum in bar state. The vertical axes are normalized to the output power of a reference Si-wire waveguide.

Fig. 3
Fig. 3

(a) Microscope image of test intersection. (b) Transmission spectra of bar and cross port. The vertical axis is normalized to the reference Si-wire waveguide output.

Fig. 4
Fig. 4

Loss and crosstalk measurement setup. PD: photodiode. PC: personal computer.

Fig. 5
Fig. 5

Fiber-to-fiber insertion loss characteristics of all 64 connections. The horizontal axis is path ID, which represents an input-output path. 1: 1 (input)-1 (output), 2: 1-2, …, 63: 8-7, and 64: 8-8.

Fig. 6
Fig. 6

(a) Paths involved in switch state #39265. (b) Suffixes (i, j) of leaked power PL (i, j) and main-path output Pj. Crosstalk is calculated from components in each row. Components in an identical color are obtained in a one-input measurement. (c) Comparison of crosstalk estimated from one-input measurements with crosstalk obtained from all-input measurements.

Fig. 7
Fig. 7

(a) Estimated crosstalk at eight output ports for all possible switch states (8! = 40,320). Two triangles indicate State #39265 and #36279. (b) Histogram of (a).

Fig. 8
Fig. 8

Wavelength dependence of crosstalk at output port 8 in switch state #39265 shown in Fig. 6(a).

Fig. 9
Fig. 9

Digital-coherent 43-Gbps QPSK signal transmission setup.

Fig. 10
Fig. 10

Measured bit-error-rate of State #39265 and #36279 shown in Fig. 9. OSNR = 13 dB.

Fig. 11
Fig. 11

Measured constellation diagrams of (a) back to back, (b) State #39265 and (c) #36279. State #39265 and #36279 are shown in Fig. 9. OSNR = 20 dB. EVM: error vector magnitude.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i P L ( i , 8 ) / P 8 .

Metrics