Abstract

A new scheme for supercontinuum generation covering more than one octave and exhibiting extraordinary high coherence properties has recently been proposed [Phys. Rev. Lett. 110, 233901 (2013)]. The scheme is based on two-pulse collision at a group velocity horizon between a dispersive wave and a soliton. Here we demonstrate that the same scheme can be exploited for the generation of supercontinua encompassing the entire transparency region of fused silica, ranging from 300 to 2300nm. At this bandwidth extension, the Raman effect becomes detrimental, yet may be compensated by using a cascaded collision process. Consequently, the high degree of coherence does not degrade even in this extreme scenario.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  2. R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376–1378 (2001).
    [Crossref]
  3. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [Crossref] [PubMed]
  4. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12, 2027–2032 (2004).
    [Crossref] [PubMed]
  5. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [Crossref]
  6. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [Crossref] [PubMed]
  7. A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15, 14560–14565 (2008).
    [Crossref]
  8. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
    [Crossref] [PubMed]
  9. D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [Crossref]
  10. A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
    [Crossref]
  11. A. Demircan and U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86, 31–39 (2007).
    [Crossref]
  12. U. Møller, S. T. Sorensen, C. Jacobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
    [Crossref] [PubMed]
  13. U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–64 (2013).
    [Crossref]
  14. A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
    [Crossref]
  15. R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18, 25993–25998 (2010).
    [Crossref] [PubMed]
  16. A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
    [Crossref] [PubMed]
  17. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
    [Crossref] [PubMed]
  18. F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
    [Crossref]
  19. D. Faccio, “Laser pulse analogues of gravity and analogue Hawking radiation,” Cont. Phys. 1, 97–112 (2012).
    [Crossref]
  20. R. Smith, “Reflection of short gravity waves on a non-uniform current,” Math. Proc. Cambridge Philos. Soc. 78, 517–525 (1975).
    [Crossref]
  21. J.-C. Nardin, G. Rousseax, and P. Coullet, “Wave-current interaction as a spatial dynamical system: analogies with rainbow and black hole physics,” Phys. Rev. Lett. 102, 124504 (2009).
    [Crossref] [PubMed]
  22. C. M. De Sterke, “Optical push broom,” Opt. Lett. 17, 914–916 (1992).
    [Crossref] [PubMed]
  23. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
    [Crossref]
  24. N. Rosanov, “Transformation of electromagnetic radiation at moving inhomogeneities of a medium,” JETP Lett. 88, 501–504 (2008).
    [Crossref]
  25. N. Rozanov, “Subluminal and superluminal parametric doppler effects in the case of light reflection from a moving smooth medium inhomogeneity,” JETP 115, 1063–7761 (2012).
    [Crossref]
  26. V. E. Lobanov and A. P. Sukhorukov, “Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear dispersive media,” Phys. Rev. A 82, 033809 (2010).
    [Crossref]
  27. M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
    [Crossref]
  28. L. Tartara, “Frequency shifting of femtosecond pulses by reflection at solitons,” IEEE J. Quantum Electron. 12, 1439–1442 (2012).
    [Crossref]
  29. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29, 2411–2413 (2004).
    [Crossref] [PubMed]
  30. A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
    [Crossref] [PubMed]
  31. E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
    [Crossref] [PubMed]
  32. P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
    [Crossref]
  33. M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
    [Crossref] [PubMed]
  34. S. Amiranashvili and A. Demircan, “Hamiltonian structure of propagation equations for ultrashort optical pulses,” Phys. Rev. A 82, 013812 (2010).
    [Crossref]
  35. S. Amiranashvili and A. Demircan, “Ultrashort optical pulse propagation in terms of analytic signal,” Adv. Opt. Technol. 2011, 989515 (2011).
    [Crossref]
  36. V. E. Zakharov, V. S. Lvov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence I – Wave Turbulence (Springer, 1992).
    [Crossref]
  37. J. M. Stone and J. C. Knight, “Visibly ‘white’ light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [Crossref] [PubMed]
  38. S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
    [Crossref] [PubMed]
  39. G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005).
    [Crossref] [PubMed]
  40. K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photonics Technol. Lett. 11, 319–321 (1999).
    [Crossref]
  41. A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
    [Crossref]
  42. S. Robertson and U. Leonhardt, “Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration,” Phys. Rev. A 81, 063835 (2010).
    [Crossref]
  43. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21, 14481–14486 (2013).
    [Crossref]
  44. R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21, 19091–19096 (2013).
    [Crossref] [PubMed]
  45. A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue wave formation by accelerated solitons at an optical event horizon,” Appl. Phys. B, doi: (2013).
    [Crossref]
  46. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [Crossref] [PubMed]
  47. G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, “Complete characterization of supercontinuum coherence,” J. Opt. Soc. Am. B 28, 2301–2309 (2011).
    [Crossref]

2013 (6)

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–64 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
[Crossref] [PubMed]

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21, 14481–14486 (2013).
[Crossref]

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21, 19091–19096 (2013).
[Crossref] [PubMed]

2012 (6)

U. Møller, S. T. Sorensen, C. Jacobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

L. Tartara, “Frequency shifting of femtosecond pulses by reflection at solitons,” IEEE J. Quantum Electron. 12, 1439–1442 (2012).
[Crossref]

N. Rozanov, “Subluminal and superluminal parametric doppler effects in the case of light reflection from a moving smooth medium inhomogeneity,” JETP 115, 1063–7761 (2012).
[Crossref]

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
[Crossref] [PubMed]

D. Faccio, “Laser pulse analogues of gravity and analogue Hawking radiation,” Cont. Phys. 1, 97–112 (2012).
[Crossref]

2011 (4)

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

S. Amiranashvili and A. Demircan, “Ultrashort optical pulse propagation in terms of analytic signal,” Adv. Opt. Technol. 2011, 989515 (2011).
[Crossref]

G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, “Complete characterization of supercontinuum coherence,” J. Opt. Soc. Am. B 28, 2301–2309 (2011).
[Crossref]

2010 (6)

R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18, 25993–25998 (2010).
[Crossref] [PubMed]

S. Robertson and U. Leonhardt, “Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration,” Phys. Rev. A 81, 063835 (2010).
[Crossref]

V. E. Lobanov and A. P. Sukhorukov, “Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear dispersive media,” Phys. Rev. A 82, 033809 (2010).
[Crossref]

S. Amiranashvili and A. Demircan, “Hamiltonian structure of propagation equations for ultrashort optical pulses,” Phys. Rev. A 82, 013812 (2010).
[Crossref]

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

2009 (1)

J.-C. Nardin, G. Rousseax, and P. Coullet, “Wave-current interaction as a spatial dynamical system: analogies with rainbow and black hole physics,” Phys. Rev. Lett. 102, 124504 (2009).
[Crossref] [PubMed]

2008 (5)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

N. Rosanov, “Transformation of electromagnetic radiation at moving inhomogeneities of a medium,” JETP Lett. 88, 501–504 (2008).
[Crossref]

A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15, 14560–14565 (2008).
[Crossref]

J. M. Stone and J. C. Knight, “Visibly ‘white’ light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[Crossref] [PubMed]

2007 (2)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[Crossref] [PubMed]

A. Demircan and U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86, 31–39 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (2)

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

2001 (3)

2000 (1)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

1999 (1)

K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photonics Technol. Lett. 11, 319–321 (1999).
[Crossref]

1997 (1)

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
[Crossref]

1992 (1)

1986 (1)

1975 (1)

R. Smith, “Reflection of short gravity waves on a non-uniform current,” Math. Proc. Cambridge Philos. Soc. 78, 517–525 (1975).
[Crossref]

Amiranashvili, S.

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

S. Amiranashvili and A. Demircan, “Ultrashort optical pulse propagation in terms of analytic signal,” Adv. Opt. Technol. 2011, 989515 (2011).
[Crossref]

S. Amiranashvili and A. Demircan, “Hamiltonian structure of propagation equations for ultrashort optical pulses,” Phys. Rev. A 82, 013812 (2010).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue wave formation by accelerated solitons at an optical event horizon,” Appl. Phys. B, doi: (2013).
[Crossref]

Bandelow, U.

A. Demircan and U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86, 31–39 (2007).
[Crossref]

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

Bang, O.

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–64 (2013).
[Crossref]

U. Møller, S. T. Sorensen, C. Jacobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

Batz, S.

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
[Crossref] [PubMed]

Belgiorno, F.

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Bersch, C.

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Biancalana, F.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

Brée, C.

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue wave formation by accelerated solitons at an optical event horizon,” Appl. Phys. B, doi: (2013).
[Crossref]

Broderick, N. G. R.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
[Crossref]

Cacciatori, S. L.

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Chang, W.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

Christodoulides, D. N.

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Chudoba, C.

Clerici, M.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Couairon, A.

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

Coullet, P.

J.-C. Nardin, G. Rousseax, and P. Coullet, “Wave-current interaction as a spatial dynamical system: analogies with rainbow and black hole physics,” Phys. Rev. Lett. 102, 124504 (2009).
[Crossref] [PubMed]

De Sterke, C. M.

Demircan, A.

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

S. Amiranashvili and A. Demircan, “Ultrashort optical pulse propagation in terms of analytic signal,” Adv. Opt. Technol. 2011, 989515 (2011).
[Crossref]

S. Amiranashvili and A. Demircan, “Hamiltonian structure of propagation equations for ultrashort optical pulses,” Phys. Rev. A 82, 013812 (2010).
[Crossref]

A. Demircan and U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86, 31–39 (2007).
[Crossref]

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue wave formation by accelerated solitons at an optical event horizon,” Appl. Phys. B, doi: (2013).
[Crossref]

Dianov, E. M.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

Driben, R.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Efimov, A.

Faccio, D.

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

D. Faccio, “Laser pulse analogues of gravity and analogue Hawking radiation,” Cont. Phys. 1, 97–112 (2012).
[Crossref]

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Falkovich, G. E.

V. E. Zakharov, V. S. Lvov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence I – Wave Turbulence (Springer, 1992).
[Crossref]

Friberg, A. T.

Fujimoto, J. G.

Gäbel, K.

Genty, G.

Ghanta, R. K.

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15, 14560–14565 (2008).
[Crossref]

Gorini, V.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Hänsch, T. W.

R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376–1378 (2001).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Hartl, I.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Hill, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Hölzer, P.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

Holzwarth, R.

R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376–1378 (2001).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Ibsen, M.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
[Crossref]

Jacobsen, C.

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[Crossref] [PubMed]

Johansen, J.

Joly, N. Y.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

Knight, J. C.

Ko, T. H.

König, F.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[Crossref] [PubMed]

Koshiba, M.

Kuklewicz, C.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Laming, R. I.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
[Crossref]

Lehtonen, M.

Leonhardt, U.

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

S. Robertson and U. Leonhardt, “Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration,” Phys. Rev. A 81, 063835 (2010).
[Crossref]

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Li, X. D.

Lobanov, V. E.

V. E. Lobanov and A. P. Sukhorukov, “Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear dispersive media,” Phys. Rev. A 82, 033809 (2010).
[Crossref]

Lotti, A.

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

Ludvigsen, H.

Lvov, V. S.

V. E. Zakharov, V. S. Lvov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence I – Wave Turbulence (Springer, 1992).
[Crossref]

Mahnke, C.

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue wave formation by accelerated solitons at an optical event horizon,” Appl. Phys. B, doi: (2013).
[Crossref]

Malomed, B. A.

Mamyshev, P. V.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

Miri, M.-A.

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Miroshnichenko, S. I.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

Mitschke, F.

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
[Crossref] [PubMed]

R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18, 25993–25998 (2010).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue wave formation by accelerated solitons at an optical event horizon,” Appl. Phys. B, doi: (2013).
[Crossref]

Mitschke, F. M.

Mollenauer, L. F.

Møller, U.

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–64 (2013).
[Crossref]

U. Møller, S. T. Sorensen, C. Jacobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

Moselund, P. M.

Nakazawa, M.

K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photonics Technol. Lett. 11, 319–321 (1999).
[Crossref]

Nardin, J.-C.

J.-C. Nardin, G. Rousseax, and P. Coullet, “Wave-current interaction as a spatial dynamical system: analogies with rainbow and black hole physics,” Phys. Rev. Lett. 102, 124504 (2009).
[Crossref] [PubMed]

Nazarkin, A.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

Onishchukov, G.

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Ortenzi, G.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Peschel, U.

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
[Crossref] [PubMed]

Philbin, T. G.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Poprawe, R.

Ranka, J. K.

Regensburger, A.

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Richardson, D. J.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
[Crossref]

Rizzi, L.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Robertson, S.

S. Robertson and U. Leonhardt, “Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration,” Phys. Rev. A 81, 063835 (2010).
[Crossref]

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[Crossref] [PubMed]

Rosanov, N.

N. Rosanov, “Transformation of electromagnetic radiation at moving inhomogeneities of a medium,” JETP Lett. 88, 501–504 (2008).
[Crossref]

Rousseax, G.

J.-C. Nardin, G. Rousseax, and P. Coullet, “Wave-current interaction as a spatial dynamical system: analogies with rainbow and black hole physics,” Phys. Rev. Lett. 102, 124504 (2009).
[Crossref] [PubMed]

Rozanov, N.

N. Rozanov, “Subluminal and superluminal parametric doppler effects in the case of light reflection from a moving smooth medium inhomogeneity,” JETP 115, 1063–7761 (2012).
[Crossref]

Rubino, E.

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Russbüldt, P.

Russell, P. St. J.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29, 2411–2413 (2004).
[Crossref] [PubMed]

R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376–1378 (2001).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Saitoh, K.

Sala, V. G.

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

Saleh, M. F.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

Semeonov, V. A.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

Skryabin, D. V.

Smith, R.

R. Smith, “Reflection of short gravity waves on a non-uniform current,” Math. Proc. Cambridge Philos. Soc. 78, 517–525 (1975).
[Crossref]

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[Crossref] [PubMed]

Sorensen, S. T.

Stegeman, G. I.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

Steinmeyer, G.

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue wave formation by accelerated solitons at an optical event horizon,” Appl. Phys. B, doi: (2013).
[Crossref]

Stone, J. M.

Sukhorukov, A. P.

V. E. Lobanov and A. P. Sukhorukov, “Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear dispersive media,” Phys. Rev. A 82, 033809 (2010).
[Crossref]

Surakka, M.

Tamura, K. R.

K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photonics Technol. Lett. 11, 319–321 (1999).
[Crossref]

Tartara, L.

L. Tartara, “Frequency shifting of femtosecond pulses by reflection at solitons,” IEEE J. Quantum Electron. 12, 1439–1442 (2012).
[Crossref]

Taverner, D.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
[Crossref]

Thomsen, C. L.

Travers, J. C.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

Turunen, J.

Udem, T.

R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376–1378 (2001).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Voronin, A. A.

A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
[Crossref]

Wadsworth, W. J.

R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376–1378 (2001).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Wigley, P. G. J.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

Wilson, J.

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

Wimmer, M.

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Windeler, R. S.

Yulin, A. V.

Zakharov, V. E.

V. E. Zakharov, V. S. Lvov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence I – Wave Turbulence (Springer, 1992).
[Crossref]

Zhavoronkov, N.

Zheltikov, A. M.

A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
[Crossref]

Zimmermann, M.

Adv. Opt. Technol. (1)

S. Amiranashvili and A. Demircan, “Ultrashort optical pulse propagation in terms of analytic signal,” Adv. Opt. Technol. 2011, 989515 (2011).
[Crossref]

Appl. Phys. B (1)

A. Demircan and U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B 86, 31–39 (2007).
[Crossref]

Cont. Phys. (1)

D. Faccio, “Laser pulse analogues of gravity and analogue Hawking radiation,” Cont. Phys. 1, 97–112 (2012).
[Crossref]

Electron. Lett. (1)

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49, 63–64 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Tartara, “Frequency shifting of femtosecond pulses by reflection at solitons,” IEEE J. Quantum Electron. 12, 1439–1442 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. R. Tamura and M. Nakazawa, “Femtosecond soliton generation over a 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber,” IEEE Photonics Technol. Lett. 11, 319–321 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP (1)

N. Rozanov, “Subluminal and superluminal parametric doppler effects in the case of light reflection from a moving smooth medium inhomogeneity,” JETP 115, 1063–7761 (2012).
[Crossref]

JETP Lett. (1)

N. Rosanov, “Transformation of electromagnetic radiation at moving inhomogeneities of a medium,” JETP Lett. 88, 501–504 (2008).
[Crossref]

Math. Proc. Cambridge Philos. Soc. (1)

R. Smith, “Reflection of short gravity waves on a non-uniform current,” Math. Proc. Cambridge Philos. Soc. 78, 517–525 (1975).
[Crossref]

Nat. Phys. (1)

M. Wimmer, A. Regensburger, C. Bersch, M.-A. Miri, S. Batz, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Optical diametric drive acceleration through action-reaction symmetry breaking,” Nat. Phys. 9, 780–784 (2013).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

Opt. Express (7)

K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12, 2027–2032 (2004).
[Crossref] [PubMed]

U. Møller, S. T. Sorensen, C. Jacobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21, 14481–14486 (2013).
[Crossref]

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21, 19091–19096 (2013).
[Crossref] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15, 14560–14565 (2008).
[Crossref]

J. M. Stone and J. C. Knight, “Visibly ‘white’ light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[Crossref] [PubMed]

R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18, 25993–25998 (2010).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. A (4)

A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
[Crossref]

S. Robertson and U. Leonhardt, “Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration,” Phys. Rev. A 81, 063835 (2010).
[Crossref]

V. E. Lobanov and A. P. Sukhorukov, “Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear dispersive media,” Phys. Rev. A 82, 033809 (2010).
[Crossref]

S. Amiranashvili and A. Demircan, “Hamiltonian structure of propagation equations for ultrashort optical pulses,” Phys. Rev. A 82, 013812 (2010).
[Crossref]

Phys. Rev. Lett. (10)

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
[Crossref]

P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semeonov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response” Phys. Rev. Lett. 71, 73–76 (2003).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

S. Batz and U. Peschel, “Diametrically driven self-accelerating pulses in a photonic crystal fiber,” Phys. Rev. Lett. 110, 193901 (2013).
[Crossref] [PubMed]

F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio, “Hawking radiation from ultrashort laser pulse filaments,” Phys. Rev. Lett. 105, 203901 (2010).
[Crossref]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

J.-C. Nardin, G. Rousseax, and P. Coullet, “Wave-current interaction as a spatial dynamical system: analogies with rainbow and black hole physics,” Phys. Rev. Lett. 102, 124504 (2009).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer, “Compressible octave spanning supercontinuum generation by two-pulse collisions,” Phys. Rev. Lett. 110, 233901 (2013).
[Crossref]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquim: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Sci. Rep. (2)

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci. Rep. 2, 850 (2012).
[Crossref] [PubMed]

E. Rubino, A. Lotti, F. Belgiorno, S. L. Cacciatori, A. Couairon, U. Leonhardt, and D. Faccio, “Soliton-induced relativistic-scattering and amplification,” Sci. Rep. 2, 932 (2012).
[Crossref] [PubMed]

Science (1)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Other (2)

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue wave formation by accelerated solitons at an optical event horizon,” Appl. Phys. B, doi: (2013).
[Crossref]

V. E. Zakharov, V. S. Lvov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence I – Wave Turbulence (Springer, 1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The group velocity dispersion β2 and the relative group delay β1 = 1/vg of a fused silica fiber, exhibiting three exemplary wavelength combinations [1550,627] nm, [1800,530] nm, and [2200,428] nm for a soliton and a probe pulse with nearly equal group velocities.

Fig. 2
Fig. 2

Time domain and spectral evolution of two pulse collision between a soliton and a dispersive wave. (a,b) Enhanced XPM for the ”resonant” wavelength combination at [1550,627] nm representing the scattering process at an effective group-velocity horizon. (c,d) Typical crossing of two pulses without any repulsion for the standard XPM interaction for wavelength combination [1550,607] nm.

Fig. 3
Fig. 3

Supercontinuum generation by two pulse collision for the three frequency combinations marked in Fig. 1. (a,b) Supercontinuum encompassing more than an octave from the anomalous to the normal dispersion regimes for the wavelength combination [1550,627] nm. (c,d) Increased spectral bandwidth for the wavelength combination [1800,530] nm. (e,f) Supercontinuum spanning over the whole transparency region of fused silica for [2200,428] nm.

Fig. 4
Fig. 4

Evolution of the supercontinuum in the time domain and the spectral domain by two-pulse collision with the impact of the Raman effect for (a,b) the wavelength combination [1800,538] nm, and (c,d) [2200,428] nm.

Fig. 5
Fig. 5

Multiple scattering between dispersive waves and a fundamental soliton for generation of a supercontinuum ranging over the whole transparency region. Evolution (a) in the time domain, and (b) the spectral domain. The first dispersive wave is injected at a center wavelength of 470nm. The wavelength of the dispersive wave for the primary interaction with the soliton lies at 428 nm. All other parameters are the same as for Fig. 4(c,d).

Fig. 6
Fig. 6

(a) Single shot spectra for the supercontinuum generation in Fig. 5 at different propagation distances. (b) Corresponding degree of coherence.

Tables (1)

Tables Icon

Table 1 Pulse parameters for the soliton and dispersive wave.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

z 2 E 1 c 2 t 2 ( ε ^ E + χ ( 3 ) E 3 ) = 0 .
z 2 E ω + β 2 ( ω ) E ω = ω 2 χ ( 3 ) c 2 ( E 3 ) ω ,
i z 𝒜 ω = δ H δ 𝒜 ω * with H = ω | β ( ω ) | 𝒜 ω 𝒜 ω * + H nonlin ( 𝒜 , 𝒜 * ) ,
i t a k = δ H δ a k * with H = k ω k | a k | 2 + H nonlin ( a , a * )
𝒜 ω ( z ) = | β ( ω ) | 2 μ 0 ω 2 [ E ω ( z ) i z E ω ( z ) | β ( ω ) | ] , E ω = μ 0 ω 2 2 | β ( ω ) | ( 𝒜 ω + 𝒜 ω * ) .
i z 𝒜 ω + | β ( ω ) | 𝒜 ω + 2 123 | ω T ω 1 ω 2 ω 3 ω 𝒜 ω 1 𝒜 ω 2 𝒜 ω 3 = 0 ,
𝒜 ω = 𝒜 ω + 𝒜 ω * 2 , T ω 1 ω 2 ω 3 ω 4 = ( μ 0 χ ( 3 ) / c 2 ) | ω 1 ω 2 ω 3 ω 4 | | β ( ω 1 ) β ( ω 2 ) β ( ω 3 ) β ( ω 4 ) | , 123 | ω = ω 1 , ω 2 , ω 3 ω 1 + ω 2 + ω 3 = ω .
H = ω | β ( ω ) | 𝒜 ω 𝒜 ω * + 1234 | 0 T ω 1 ω 2 ω 3 ω 4 𝒜 ω 1 𝒜 ω 2 𝒜 ω 3 𝒜 ω 4 .
H nonl = 3 8 1 2 ¯ 3 4 ¯ | 0 T ω 1 ω 2 ω 3 ω 4 𝒜 ω 1 𝒜 ω 2 * 𝒜 ω 3 𝒜 ω 4 *
i z 𝒜 ω + | β ( ω ) | 𝒜 ω + 3 4 1 2 ¯ 3 | ω T ω 1 ω 2 ω 3 ω 𝒜 ω 1 𝒜 ω 2 * 𝒜 ω 3 = 0 ,
H = T / 2 T / 2 [ ε 0 2 ( ε ^ E + 1 2 χ ( 3 ) E 3 ) E + 1 2 μ 0 B 2 ] d t T ,
ω ω | 𝒜 ω | 2 = T / 2 T / 2 E B μ 0 d t T = const
ω | 𝒜 ω | 2 = ω 1 | β ( ω ) | ( ε 0 ε eff ( ω ) | E ω | 2 2 + | B ω | 2 2 μ 0 ) = const
[ 1 1 | β ( ω ) | i z ] e ± i β ( ω ) z i ω t = [ 1 ± sign ω ] e ± i β ( ω ) z i ω t .
𝒜 ω = | β ( ω ) | 2 μ 0 ω 2 ω , ω > 0 ,
E ( z , t ) = ω E ω ( z ) e i ω t ( z , t ) = 2 ω > 0 E ω ( z ) e i ω t .
i z ω + β ( ω ) ω + ω 2 χ ( 3 ) 8 c 2 β ( ω ) [ ( + * ) 3 ] ω = 0 .
i z ω + β ( ω ) ω + 3 ω 2 χ ( 3 ) 8 c 2 β ( ω ) ( | | 2 ) ω = 0 , ω > 0 .
z + β ^ + n 2 c t ( | | 2 ) + = 0 .
z + β ^ + n 2 c t ( f K | | 2 + f R h ^ | | 2 ) + = 0 ,
h ^ | ( z , t ) | 2 = 0 h ( t ) | ( z , t t ) | 2 d t , h ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 e t / τ 2 sin ( t / τ 1 )
( z = 0 , t ) = s sech ( t / t s ) e i ω s t + p sech ( t / t p ) e i ω p t ,
E = 2 P 0 | β 2 | / γ ,
| g 12 ( λ , t 1 t 2 ) | = | E 1 * ( λ , t 1 ) E 2 ( λ , t 2 ) | E ( λ , t 1 ) | 2 | E 2 ( λ , t 2 ) | 2 | .

Metrics