Abstract

We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in undoped crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” J. Emerg. Technol. Comput. Syst. 7, 6:1–6:54 (2011).
    [CrossRef]
  2. J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [CrossRef]
  3. A. Harke, M. Krause, J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
    [CrossRef]
  4. R. Sun, J. Cheng, J. Michel, L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34, 2378–2380 (2009).
    [CrossRef] [PubMed]
  5. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
    [CrossRef]
  6. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
    [CrossRef] [PubMed]
  7. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides.” Opt. Express 19, B146–B153 (2011).
    [CrossRef]
  8. K. Narayanan, A. W. Elshaari, S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
    [CrossRef] [PubMed]
  9. J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013).
    [CrossRef] [PubMed]
  10. K.-Y. Wang, A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
    [CrossRef] [PubMed]
  11. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
    [CrossRef] [PubMed]
  12. K.-Y. Wang, K. G. Petrillo, M. A. Foster, A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express 20, 24600–24606 (2012).
    [CrossRef] [PubMed]
  13. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University, 2005).
  14. M. Stutzmann, W. B. Jackson, C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics (Academic Press, 2008), 3rd edition.
  16. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [CrossRef] [PubMed]
  17. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010).
    [CrossRef] [PubMed]
  18. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16, 7693 (2008).
    [CrossRef] [PubMed]
  19. K. Preston, P. Dong, B. Schmidt, M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).
    [CrossRef]
  20. D. Taillaert, P. Bienstman, R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides.” Opt. Lett. 29, 2749–2751 (2004).
    [CrossRef] [PubMed]
  21. B. E. Little, J. P. Laine, S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators.” Opt. Lett. 22, 4–6 (1997).
    [CrossRef] [PubMed]
  22. Q. Xu, D. Fattal, R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
    [CrossRef] [PubMed]
  23. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
    [CrossRef]
  24. S. Zhu, G. Q. Lo, W. Li, D. L. Kwong, “Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides.” Opt. Express 20, 23676–83 (2012).
    [CrossRef] [PubMed]
  25. N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
    [CrossRef] [PubMed]
  26. D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [CrossRef]
  27. M. Georgas, J. Leu, B. Moss, C. Sun, V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in “Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC),” (2011), pp. 1–8.
    [CrossRef]
  28. R. G. Beausoleil, M. McLaren, N. P. Jouppi, “Photonic Architectures for Data Centers,” IEEE J. Sel. Top. Quantum Electron.19, 3700109:1–9 (2013).
    [CrossRef]
  29. P. Barclay, K. Srinivasan, O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper.” Opt. Express 13, 801–820 (2005).
    [CrossRef] [PubMed]
  30. T. Tanabe, M. Notomi, E. Kuramochi, H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities.” Opt. Express 15, 7826–7839 (2007).
    [CrossRef] [PubMed]
  31. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
    [CrossRef]
  32. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [CrossRef]
  33. A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
    [CrossRef]
  34. E. W. Van Stryland, D. J. Hagan, Nonlinear Optics Group, CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL, USA (personal communication 2013).
  35. B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
    [CrossRef]
  36. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
    [CrossRef] [PubMed]
  37. J. J. Wathen, V. R. Pagán, T. E. Murphy, “Simple method to characterize nonlinear refraction and loss in optical waveguides.” Opt. Lett. 37, 4693–4695 (2012).
    [CrossRef] [PubMed]

2013 (3)

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[CrossRef]

J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013).
[CrossRef] [PubMed]

2012 (6)

2011 (3)

2010 (4)

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010).
[CrossRef] [PubMed]

K. Narayanan, A. W. Elshaari, S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
[CrossRef] [PubMed]

2009 (2)

R. Sun, J. Cheng, J. Michel, L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34, 2378–2380 (2009).
[CrossRef] [PubMed]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[CrossRef]

2008 (3)

2007 (2)

A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities.” Opt. Express 15, 7826–7839 (2007).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

1997 (2)

B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[CrossRef]

B. E. Little, J. P. Laine, S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators.” Opt. Lett. 22, 4–6 (1997).
[CrossRef] [PubMed]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

1985 (1)

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Badding, J. V.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

Baets, R.

Ballesteros, G. C.

Barclay, P.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Beausoleil, R. G.

R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” J. Emerg. Technol. Comput. Syst. 7, 6:1–6:54 (2011).
[CrossRef]

Q. Xu, D. Fattal, R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[CrossRef] [PubMed]

R. G. Beausoleil, M. McLaren, N. P. Jouppi, “Photonic Architectures for Data Centers,” IEEE J. Sel. Top. Quantum Electron.19, 3700109:1–9 (2013).
[CrossRef]

Ben Bakir, B.

Bienstman, P.

Bogaerts, W.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[CrossRef] [PubMed]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[CrossRef]

Bolivar, P. H.

Bolten, J.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 2008), 3rd edition.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Carletti, L.

Cheng, J.

Chu, S.

B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[CrossRef]

Chu, S. T.

Clemmen, S.

Dambre, J.

Day, T. D.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

Dong, P.

K. Preston, P. Dong, B. Schmidt, M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).
[CrossRef]

Dumon, P.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[CrossRef]

Elshaari, A. W.

Emplit, P.

Fattal, D.

Fedeli, J. M.

Fédéli, J.-M.

Fiers, M.

Foresi, J.

B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[CrossRef]

Först, M.

Foster, A. C.

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010).
[CrossRef] [PubMed]

Galili, M.

Gautier, P.

Georgas, M.

M. Georgas, J. Leu, B. Moss, C. Sun, V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in “Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC),” (2011), pp. 1–8.
[CrossRef]

Gottheil, M.

Grillet, C.

Grosse, P.

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

E. W. Van Stryland, D. J. Hagan, Nonlinear Optics Group, CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL, USA (personal communication 2013).

Harke, A.

A. Harke, M. Krause, J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[CrossRef]

Haus, H.

B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[CrossRef]

Healy, N.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

Henschel, W.

Hu, H.

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Jackson, W. B.

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[CrossRef]

Jeppesen, P.

Ji, H.

Jouppi, N. P.

R. G. Beausoleil, M. McLaren, N. P. Jouppi, “Photonic Architectures for Data Centers,” IEEE J. Sel. Top. Quantum Electron.19, 3700109:1–9 (2013).
[CrossRef]

Kimerling, L.

Koos, C.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Krause, M.

A. Harke, M. Krause, J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[CrossRef]

Kumar, R.

Kuramochi, E.

Kurz, H.

Kuyken, B.

Kwong, D. L.

Laine, J. P.

Laine, J.-P.

B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[CrossRef]

Leu, J.

M. Georgas, J. Leu, B. Moss, C. Sun, V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in “Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC),” (2011), pp. 1–8.
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Levy, J. S.

Li, W.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010).
[CrossRef] [PubMed]

K. Preston, P. Dong, B. Schmidt, M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Little, B.

B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[CrossRef]

Little, B. E.

Lo, G. Q.

Martí, J.

Massar, S.

Matres, J.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

McLaren, M.

R. G. Beausoleil, M. McLaren, N. P. Jouppi, “Photonic Architectures for Data Centers,” IEEE J. Sel. Top. Quantum Electron.19, 3700109:1–9 (2013).
[CrossRef]

Mechet, P.

Mehta, P.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

Menezo, S.

Michel, J.

Monat, C.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[CrossRef]

Morthier, G.

Moss, B.

M. Georgas, J. Leu, B. Moss, C. Sun, V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in “Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC),” (2011), pp. 1–8.
[CrossRef]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[CrossRef]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[CrossRef] [PubMed]

Mueller, J.

A. Harke, M. Krause, J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[CrossRef]

Murphy, T. E.

Narayanan, K.

Niehusmann, J.

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities.” Opt. Express 15, 7826–7839 (2007).
[CrossRef] [PubMed]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

Oton, C. J.

Oxenløwe, L. K.

Pagán, V. R.

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Peacock, A. C.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

Petrillo, K. G.

Plötzing, T.

Poitras, C. B.

Preble, S. F.

Preston, K.

K. Preston, P. Dong, B. Schmidt, M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).
[CrossRef]

Pu, M.

Roelkens, G.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Salem, R.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[CrossRef]

Schmidt, B.

K. Preston, P. Dong, B. Schmidt, M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).
[CrossRef]

Schrauwen, B.

Selvaraja, S. K.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[CrossRef]

Spuesens, T.

Srinivasan, K.

Stojanovic, V.

M. Georgas, J. Leu, B. Moss, C. Sun, V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in “Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC),” (2011), pp. 1–8.
[CrossRef]

Street, R. A.

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University, 2005).

Stutzmann, M.

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[CrossRef]

Suhailin, F. H.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

Sun, C.

M. Georgas, J. Leu, B. Moss, C. Sun, V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in “Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC),” (2011), pp. 1–8.
[CrossRef]

Sun, R.

Taillaert, D.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities.” Opt. Express 15, 7826–7839 (2007).
[CrossRef] [PubMed]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities.” Opt. Express 15, 7826–7839 (2007).
[CrossRef] [PubMed]

Thourhout, D. V.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[CrossRef]

Tsai, C. C.

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[CrossRef]

Turner-Foster, A. C.

van Driel, H. M.

A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

E. W. Van Stryland, D. J. Hagan, Nonlinear Optics Group, CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL, USA (personal communication 2013).

Van Thourhout, D.

Van Vaerenbergh, T.

Vörckel, A.

Vukovic, N.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

Wahlbrink, T.

Waldow, M.

Wang, K.-Y.

Wathen, J. J.

Xu, Q.

Zhu, S.

Appl. Phys. Lett. (2)

K. Preston, P. Dong, B. Schmidt, M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).
[CrossRef]

A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Electron. Lett. (1)

A. Harke, M. Krause, J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

J. Emerg. Technol. Comput. Syst. (1)

R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” J. Emerg. Technol. Comput. Syst. 7, 6:1–6:54 (2011).
[CrossRef]

J. Light. Technol. (1)

B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[CrossRef]

Nat. Photonics (3)

D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[CrossRef]

Opt. Express (12)

J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides.” Opt. Express 19, B146–B153 (2011).
[CrossRef]

T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012).
[CrossRef] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, W. Li, D. L. Kwong, “Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides.” Opt. Express 20, 23676–83 (2012).
[CrossRef] [PubMed]

K.-Y. Wang, K. G. Petrillo, M. A. Foster, A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express 20, 24600–24606 (2012).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010).
[CrossRef] [PubMed]

K. Narayanan, A. W. Elshaari, S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
[CrossRef] [PubMed]

P. Barclay, K. Srinivasan, O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper.” Opt. Express 13, 801–820 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities.” Opt. Express 15, 7826–7839 (2007).
[CrossRef] [PubMed]

Q. Xu, D. Fattal, R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[CrossRef] [PubMed]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16, 7693 (2008).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. B (1)

M. Stutzmann, W. B. Jackson, C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985).
[CrossRef]

Sci. Rep. (1)

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013).
[CrossRef] [PubMed]

Other (5)

R. W. Boyd, Nonlinear Optics (Academic Press, 2008), 3rd edition.

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University, 2005).

M. Georgas, J. Leu, B. Moss, C. Sun, V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in “Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC),” (2011), pp. 1–8.
[CrossRef]

R. G. Beausoleil, M. McLaren, N. P. Jouppi, “Photonic Architectures for Data Centers,” IEEE J. Sel. Top. Quantum Electron.19, 3700109:1–9 (2013).
[CrossRef]

E. W. Van Stryland, D. J. Hagan, Nonlinear Optics Group, CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL, USA (personal communication 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning electron micrographs of a-Si:H devices after etching: (a) layout of microring device with bus waveguide and grating couplers; (b) close-up of grating coupler for TM-polarized light; (c) a 5-μm-diameter a-Si:H microring and bus waveguide.

Fig. 2
Fig. 2

(a) Measured transmission for 10-μm-diameter a-Si:H microring using a cw laser scan, and fit to a Lorentzian response. The observed Q = 7500, and extinction ratio is 23.3 dB, showing operation very near the critical coupling point; (b) Spectrum of pump pulses (Pp = 1.1 W) transmitted through the ring resonator measured using an OSA, and fit to a CMT simulation with a Gaussian pump pulse with τp = 2.7 ps.

Fig. 3
Fig. 3

Experimental setup for pump-probe optical switching experiments on microring resonators. Abbreviations: MLL, mode-locked laser; TBPF, tunable band-pass filter; EDFA, erbium-doped fiber amplifier; VATT, variable optical attenuator; PC, polarization controller; WDM, wavelength-division multiplexer; OSA, optical spectrum analyzer. The pump path is denoted by red lines, and the probe path denoted by blue; the pump wavelength is positioned one FSR longer than the probe.

Fig. 4
Fig. 4

Transmitted probe power versus time showing influence of three nonlinear effects: Kerr (XPM) redshift, FCD blueshift, and thermo-optic redshift for an a-Si:H microring resonator with D = 10 μm. Inset: position of probe wavelength λa relative to the cavity resonance λcav before the arrival of the pump pulse at t = 0.4 ns.

Fig. 5
Fig. 5

(a) Measured and (b) simulated normalized probe transmission as a function of time and probe wavelength for a-Si:H microring resonator with D = 10 μm. Red denotes high transmission and blue denotes low transmission. (c) shows individual probe oscilloscope traces when the probe is either on-resonance (blue curve) or red-detuned from the resonance (green curve).

Fig. 6
Fig. 6

(a) Measured and (b) simulated probe transmission as a function of time and probe wavelength for c-Si microring resonator with D = 5 μm.

Tables (1)

Tables Icon

Table 1 Parameters describing optical and material properties in amorphous and crystalline silicon microring resonators, and their values. Values marked with an asterisk were measured in this work, and those not measured in this work are quoted from [36], except where indicated. D is the diameter of the resonator.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ω 0 = Δ n n g ,
U = λ 3 n n 2 c V ˜ Q .
d a d t = [ i ( ω 0 ω a ) γ 0 2 ] a + κ s a ( t ) ,
Re [ δ ω a nl ] = c ω 0 n 2 Γ TPA n g 2 V TPA ( | a | 2 + 2 | b | 2 ) ( ω 0 n g d n d N ) N ( ω 0 n g d n d T ) Δ T .
d a d t = [ i ( ω 0 ω a + δ ω a nl ) γ 0 2 ] a + κ s a ( t )
d b d t = [ i ( ω 0 ω b + δ ω b nl ) γ 0 2 ] b + κ s b ( t ) .
d N d t = N τ car = ( Γ FCA β c 2 2 h ¯ ω 0 V FCA 2 n g 2 ) | b | 4
d Δ T d t = Δ T τ th + ( Γ th γ 0 ρ C p V th ) | b | 2

Metrics