Abstract

We demonstrate various silicon-on-insulator polarization management structures based on a polarization rotator-splitter that uses a bi-level taper TM0-TE1 mode converter. The designs are fully compatible with standard active silicon photonics platforms with no new levels required and were implemented in the IME baseline and IME-OpSIS silicon photonics processes. We demonstrate a polarization rotator-splitter with polarization crosstalk < −13 dB over a bandwidth of 50 nm. Then, we improve the crosstalk to < −22 dB over a bandwidth of 80 nm by integrating the polarization rotator-splitter with directional coupler polarization filters. Finally, we demonstrate a polarization controller by integrating the polarization rotator-splitters with directional couplers, thermal tuners, and PIN diode phase shifters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Editorial, “Simply silicon,” Nat. Photonics 4, 491 (2010).
    [CrossRef]
  2. T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
    [CrossRef]
  3. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
    [CrossRef]
  4. M. R. Watts, H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30, 139–140 (2005).
  5. M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
    [CrossRef] [PubMed]
  6. L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
    [CrossRef] [PubMed]
  7. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
    [CrossRef] [PubMed]
  8. D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
    [CrossRef]
  9. L. Liu, Y. Ding, K. Yvind, J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
    [CrossRef] [PubMed]
  10. D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [CrossRef] [PubMed]
  11. Y. Ding, H. Ou, C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38, 1227–1229 (2013).
    [CrossRef] [PubMed]
  12. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
    [CrossRef]
  13. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
    [CrossRef] [PubMed]
  14. www.opsisfoundry.org .
  15. W. Yuan, K. Kojima, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, E. Yagyu, “Mode-evolution-based polarization rotator-splitter design via simple fabrication process,” Opt. Express 20, 10163–10169 (2012).
    [CrossRef] [PubMed]
  16. D. Dai, Y. Yang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20, 13425–13439 (2012).
    [CrossRef] [PubMed]
  17. W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in “Conference on Lasers and Electro-Optics, OSA Technical Digest,” (2013), p. CTu3F.3.
  18. N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
    [CrossRef]
  19. T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
    [CrossRef]
  20. C. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in “Optical Communication (ECOC), 2010 36th European Conference and Exhibition on,” (2010), pp. 1–3.
  21. C. Doerr, N. Fontaine, L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24, 697–699 (2012).
    [CrossRef]

2013

2012

W. Yuan, K. Kojima, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, E. Yagyu, “Mode-evolution-based polarization rotator-splitter design via simple fabrication process,” Opt. Express 20, 10163–10169 (2012).
[CrossRef] [PubMed]

C. Doerr, N. Fontaine, L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24, 697–699 (2012).
[CrossRef]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

D. Dai, Y. Yang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20, 13425–13439 (2012).
[CrossRef] [PubMed]

2011

2010

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Editorial, “Simply silicon,” Nat. Photonics 4, 491 (2010).
[CrossRef]

2008

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

2007

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

2005

M. R. Watts, H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30, 139–140 (2005).

M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[CrossRef] [PubMed]

2002

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

1990

N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Absil, P.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

Ang, K.-W.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Ayazi, A.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Baehr-Jones, T.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in “Conference on Lasers and Electro-Optics, OSA Technical Digest,” (2013), p. CTu3F.3.

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

Bowers, J. E.

D. Dai, Y. Yang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20, 13425–13439 (2012).
[CrossRef] [PubMed]

D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[CrossRef] [PubMed]

Buhl, L.

C. Doerr, N. Fontaine, L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24, 697–699 (2012).
[CrossRef]

Chen, L.

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
[CrossRef] [PubMed]

C. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in “Optical Communication (ECOC), 2010 36th European Conference and Exhibition on,” (2010), pp. 1–3.

Chen, Y.-K.

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
[CrossRef] [PubMed]

Dai, D.

D. Dai, Y. Yang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20, 13425–13439 (2012).
[CrossRef] [PubMed]

D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[CrossRef] [PubMed]

Danziger, S.

T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[CrossRef]

Ding, R.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Ding, Y.

Doerr, C.

C. Doerr, N. Fontaine, L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24, 697–699 (2012).
[CrossRef]

C. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in “Optical Communication (ECOC), 2010 36th European Conference and Exhibition on,” (2010), pp. 1–3.

Doerr, C. R.

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
[CrossRef] [PubMed]

Fang, Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Fontaine, N.

C. Doerr, N. Fontaine, L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24, 697–699 (2012).
[CrossRef]

Fukuda, H.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

Harris, N. C.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Hashizume, Y.

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

Haus, H. A.

M. R. Watts, H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30, 139–140 (2005).

M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[CrossRef] [PubMed]

Hochberg, M.

T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[CrossRef]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[CrossRef] [PubMed]

Itabashi, S.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Kisaka, Y.

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

Koike-Akino, T.

Kojima, K.

Kuwahara, S.

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

Kwong, D.-L.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Lee, P.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Lim, A. E.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Liow, T. Y.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Liow, T.-Y.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Liu, L.

Liu, Y.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Lo, G. Q.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Lo, G.-Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Miyamoto, Y.

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

Nishikawa, S.

Okamoto, K.

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

Ou, H.

Parsons, K.

Peucheret, C.

Pinguet, L.

T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[CrossRef]

Pinguet, T.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Poon, J. K.

W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in “Conference on Lasers and Electro-Optics, OSA Technical Digest,” (2013), p. CTu3F.3.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Prather, D.

T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Roelkens, G.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

Sacher, W.

W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in “Conference on Lasers and Electro-Optics, OSA Technical Digest,” (2013), p. CTu3F.3.

Saida, T.

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

Selvaraja, S.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

Shibata, T.

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

Shinojima, H.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Song, J.-F.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Streshinsky, M.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Takiguchi, K.

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

Teo, S. H.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

Tsuchizawa, T.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

Van Thourhout, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

Verheyen, P.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

Vermeulen, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

Walker, G.

N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Walker, N.

N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Wang, B.

Watanabe, T.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30, 139–140 (2005).

M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[CrossRef] [PubMed]

Xiong, Y.-Z.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Yagyu, E.

Yamada, K.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

Yang, Y.

D. Dai, Y. Yang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20, 13425–13439 (2012).
[CrossRef] [PubMed]

Yu, M.-B.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

Yuan, W.

Yvind, K.

Zhang, Y.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012).
[CrossRef]

T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002).
[CrossRef]

C. Doerr, N. Fontaine, L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24, 697–699 (2012).
[CrossRef]

J. Lightwave Technol.

N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[CrossRef]

Nat. Photonics

Editorial, “Simply silicon,” Nat. Photonics 4, 491 (2010).
[CrossRef]

T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012).
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Opt. Express

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

D. Dai, Y. Yang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20, 13425–13439 (2012).
[CrossRef] [PubMed]

Opt. Lett.

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

C. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in “Optical Communication (ECOC), 2010 36th European Conference and Exhibition on,” (2010), pp. 1–3.

W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in “Conference on Lasers and Electro-Optics, OSA Technical Digest,” (2013), p. CTu3F.3.

www.opsisfoundry.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the polarization rotator-splitter (PRS). Widths are labeled in red and purple; lengths use green labels. (b) Schematic showing the profiles of the modes with the first and second highest effective indices (i.e., “mode 1” and “mode 2”) at different points along the PRS. In the adiabatic coupler, “mode 1” and “mode 2” refer to supermodes of the composite waveguide. (c) Effective indices (neff) along the first half of the bi-level taper for modes 1 to 3 at a wavelength of 1550 nm.

Fig. 2
Fig. 2

(a) An optical micrograph of the polarization rotator-splitter fabricated in the IME baseline process. Magnified optical micrographs are shown for (b), the bi-level taper, and (c), the end of the adiabatic coupler.

Fig. 3
Fig. 3

Measurement data for the PRS in Fig. 2. (a) Transmission spectra of the PRS TE branch (top) output. (b) Transmission spectra of the PRS TM branch (bottom) output. (c) Magnified TE component of the TE branch transmission for a TE input. (d) Magnified TE component of the TM branch transmission for a TM input. The legends in (a) and (b) indicate the settings of the input and output polarizers (i.e., TE→TM means we had a TE input and measured the TM component of the output). (c) and (d) represent the PRS insertion loss, and the red curves have been post-processed to remove Fabry-Perot oscillations from the edge coupler facets and the measurement apparatus.

Fig. 4
Fig. 4

Annotated optical micrograph of the polarization splitter-rotator (PSR) with improved crosstalk.

Fig. 5
Fig. 5

Measurement data for the PSR in Fig. 4. (a) Transmission spectra of the PSR TE branch (top) output. (b) Transmission spectra of the PSR TM branch (bottom) output. (c) Magnified TE component of the TE branch transmission for a TE input. (d) Magnified TE component of the TM branch transmission for a TM input. The legends in (a) and (b) indicate the settings of the input and output polarizers (i.e., TE→TM means we had a TE input and measured the TM component of the output). The red curves in (c) and (d) have been post-processed to remove Fabry-Perot oscillations from the chip facets and the measurement setup.

Fig. 6
Fig. 6

(a) Schematic of the polarization controller. “3-dB DC” is a 3 dB directional coupler. (b) Optical micrograph of the polarizaton controller fabricated in the IME-OpSIS process.

Fig. 7
Fig. 7

Polarization controller measurement data. (a) Current-voltage characteristics of the top-left thermal tuner and PIN diode. (b) Normalized output power as the output polarizer was rotated. With a TE-polarized input, bias conditions were chosen to obtain a TM-polarized output (black curve), a −45° linearly-polarized output (blue curve), and a circularly-polarized output (red curve). (c) Normalized output power as the top-left thermal tuner power was swept. (d) Normalized output power as the top-left PIN diode current was swept. In (c) and (d), the output polarizer was set to pass either TE or TM or removed from the optical path (“Total out”). The optical output power curves were normalized to the maximum value in each plot. The magenta labels and dashed lines indicate points where a TM or TE output was generated from the TE input (marked “TE→TM” and “TE→TE”, respectively).

Metrics