Abstract

We report on an accurate determination of the rotational constants of the ultracold long-range Cesium molecules in near dissociation domain. The scheme relies on a precise reference of the frequency difference in a double photoassociation spectroscopy induced by two laser beams based on an acoustic-optical modulator. The rotational constants are obtained by fitting a non-rigid rotor model into the frequency intervals of the neighboring rotational levels deduced from the reference.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Dulieu, C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72(8), 086401 (2009).
    [CrossRef]
  2. S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
    [CrossRef] [PubMed]
  3. M. Schnell, G. Meijer, “Cold Molecules: Preparation, Applications, and Challenges,” Angew. Chem. Int. Ed. Engl. 48(33), 6010–6031 (2009).
    [CrossRef] [PubMed]
  4. K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
    [CrossRef]
  5. J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
    [CrossRef] [PubMed]
  6. J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
    [CrossRef]
  7. C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).
  8. J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
    [CrossRef]
  9. M. Pichler, H. Chen, W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
    [CrossRef] [PubMed]
  10. J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
    [CrossRef]
  11. Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
    [CrossRef]
  12. B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules (Longman Group Press, 1983).
  13. D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet, “Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
    [CrossRef] [PubMed]
  14. J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
    [CrossRef] [PubMed]
  15. A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
    [CrossRef]
  16. J. Ma, J. Z. Wu, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Determination of the rotational constant of the Cs2 0g- (6s + 6p3/2) state by trap loss spectroscopy,” Opt. Express 18(16), 17089–17095 (2010).
    [CrossRef] [PubMed]

2013 (1)

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

2012 (2)

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

2011 (1)

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Ma, J. Z. Wu, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Determination of the rotational constant of the Cs2 0g- (6s + 6p3/2) state by trap loss spectroscopy,” Opt. Express 18(16), 17089–17095 (2010).
[CrossRef] [PubMed]

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

2009 (3)

M. Schnell, G. Meijer, “Cold Molecules: Preparation, Applications, and Challenges,” Angew. Chem. Int. Ed. Engl. 48(33), 6010–6031 (2009).
[CrossRef] [PubMed]

O. Dulieu, C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72(8), 086401 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

2007 (1)

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

2006 (1)

K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

2004 (1)

M. Pichler, H. Chen, W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

2000 (1)

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

1999 (2)

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet, “Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

Allegrini, M.

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

Amiot, C.

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

Bohn, J. L.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Cheinet, P.

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

Chen, G.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

Chen, H.

M. Pichler, H. Chen, W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

Comparat, D.

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet, “Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

Crubellier, A.

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

Dai, X.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

de Miranda, M. H.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Drag, C.

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet, “Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

Dulieu, O.

O. Dulieu, C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72(8), 086401 (2009).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet, “Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

Fan, Q.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

Feng, H.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

Fioretti, A.

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet, “Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

Gabbanini, C.

O. Dulieu, C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72(8), 086401 (2009).
[CrossRef]

Gould, P. L.

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

Gurian, J. H.

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

Huillery, P.

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

Jia, S.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

Jia, S. T.

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

J. Ma, J. Z. Wu, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Determination of the rotational constant of the Cs2 0g- (6s + 6p3/2) state by trap loss spectroscopy,” Opt. Express 18(16), 17089–17095 (2010).
[CrossRef] [PubMed]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Jin, D. S.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Jones, K. M.

K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

Julienne, P. S.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

Laburthe, T. B.

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

Lett, P. D.

K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

Li, Y. Q.

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

Ma, J.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

J. Ma, J. Z. Wu, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Determination of the rotational constant of the Cs2 0g- (6s + 6p3/2) state by trap loss spectroscopy,” Opt. Express 18(16), 17089–17095 (2010).
[CrossRef] [PubMed]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Masnou-Seeuws, F.

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

Meijer, G.

M. Schnell, G. Meijer, “Cold Molecules: Preparation, Applications, and Challenges,” Angew. Chem. Int. Ed. Engl. 48(33), 6010–6031 (2009).
[CrossRef] [PubMed]

Neyenhuis, B.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Ni, K. K.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Ospelkaus, S.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Pichler, M.

M. Pichler, H. Chen, W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

Pillet, P.

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet, “Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

Quéméner, G.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, G. Meijer, “Cold Molecules: Preparation, Applications, and Challenges,” Angew. Chem. Int. Ed. Engl. 48(33), 6010–6031 (2009).
[CrossRef] [PubMed]

Stwalley, W. C.

M. Pichler, H. Chen, W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

Sun, W.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

T’Jampens, B.

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

Tiesinga, E.

K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

Wang, D.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Wang, L. R.

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Wu, J.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

Wu, J. Z.

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

J. Ma, J. Z. Wu, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Determination of the rotational constant of the Cs2 0g- (6s + 6p3/2) state by trap loss spectroscopy,” Opt. Express 18(16), 17089–17095 (2010).
[CrossRef] [PubMed]

Xiao, L.

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

Xiao, L. T.

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

J. Ma, J. Z. Wu, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Determination of the rotational constant of the Cs2 0g- (6s + 6p3/2) state by trap loss spectroscopy,” Opt. Express 18(16), 17089–17095 (2010).
[CrossRef] [PubMed]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Ye, J.

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Zhang, L. J.

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

Zhang, Y. C.

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

Zhao, J.

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

Zhao, Y. T.

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

J. Ma, J. Z. Wu, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Determination of the rotational constant of the Cs2 0g- (6s + 6p3/2) state by trap loss spectroscopy,” Opt. Express 18(16), 17089–17095 (2010).
[CrossRef] [PubMed]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

M. Schnell, G. Meijer, “Cold Molecules: Preparation, Applications, and Challenges,” Angew. Chem. Int. Ed. Engl. 48(33), 6010–6031 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Y. C. Zhang, J. Ma, Y. Q. Li, J. Z. Wu, L. J. Zhang, G. Chen, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms,” Appl. Phys. Lett. 101(13), 131114 (2012).
[CrossRef]

Eur. Phys. J. D (1)

A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, “Photoassociative spectroscopy of the Cs2 0g− long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

J. Chem. Phys. (1)

M. Pichler, H. Chen, W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

J. Mol. Spectrosc. (2)

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet, “Photoassociative Spectroscopy and Formation of Cold Molecules in Cold Cesium Vapor: Trap-Loss Spectrum versus Ion Spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (1)

J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, S. Jia, “Experimental Determination of the Rotational Constants of HighLying Vibrational Levels of Ultracold Cs2 in the 0g− Purely Long-Range State,” J. Phys. Chem. Lett. 4(21), 3612–3617 (2013).
[CrossRef]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao, G. Chen, L. T. Xiao, S. T. Jia, “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules,” Phys. Chem. Chem. Phys. 13(42), 18921–18925 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet, “Observation of a Resonant Four-Body Interaction in Cold Cesium Rydberg Atoms,” Phys. Rev. Lett. 108(2), 023005 (2012).
[CrossRef] [PubMed]

C. Drag, T. B. Laburthe, B. T’Jampens, D. Comparat, M. Allegrini, A. Crubellier, P. Pillet, “Photoassociative Spectroscopy as a Self-Sufficient Tool for the Determination of the Cs Triplet Scattering Length,” Phys. Rev. Lett. 85(7), 1408–1411 (2000).

Rep. Prog. Phys. (1)

O. Dulieu, C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72(8), 086401 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

Science (1)

S. Ospelkaus, K. K. Ni, D. Wang, M. H. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[CrossRef] [PubMed]

Other (1)

B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules (Longman Group Press, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a). Experimental setup. M: high reflective mirror; OI: optical isolator; H: half wave plate; PBS: polarization beam splitter; L: lens; S: Shutter; Q: quarter wave plate; AOM: acousto-optic modulator; BT: beam trap; BPF: band pass filter; APD: Avalanche photodiode; PD: photodiode; CCD: Charge-coupled Device. Figure 1 (b). Schematic diagram of the double PA spectroscopy. The dashed inset demonstrates the sequence diagram. ts, ~10 ms, represents the response time in which the laser beam can be turned on/off completely.

Fig. 2
Fig. 2

(a) PA spectrum (red curve) vs. double PA spectrum (green curve) for the high-lying vibrational level ([vD] – v = 17) of the Cs2 0g (6S1/2 + 6P1/2) long-range state. The PA spectrum is directly inverted in order to make curves comparable. PA laser frequency is tuned near 11174.91cm−1. (b) Dependence of the frequency intervals ΔυJ on J for [vD] – v = 17 of the Cs2 0g (6S1/2 + 6P1/2) long-range state. The circle symbols represent experimental data, while the lines are the fits to the nonlinear non-rigid and linear rigid rotor models.

Fig. 3
Fig. 3

Six typical double PA spectra with the reference of frequency difference are provided for typical vibrational levels of the Cs2 0g (6S1/2 + 6P1/2) long-range state. The intensity of the PA laser beams (I and II) is 43.5 W/cm−2 and keeps unchanged. The Ti:sapphire laser is slowly scanned at a rate of 5.0 MHz/s. The colorful curves are the multipeak Lorentzian fitting results.

Fig. 4
Fig. 4

Dependence of rotational constants B (blue balls) on vibrational quantum number [vD] –v of the Cs2 0g (6S1/2 + 6P1/2) long-range state. The red circles represent the experimental values of the rotational constants for different vibrational states listed in Ref. 9.

Tables (1)

Tables Icon

Table 1 Rotational Constants and Centrifugal Distortion Constants of Vibrational Levels ([vD] – v = 15 ~22)

Metrics