Abstract

We experimentally demonstrate a polarization-independent terahertz Fano resonance with extraordinary transmission when light passes through two concentric subwavelength ring apertures in the metal film. The Fano resonance is enabled by the coupling between a high-Q dark mode and a low-Q bright mode. We find the Q factor of the dark mode ranges from 23 to 40, which is 3~6 times higher than Q of bright mode. We show the Fano resonance can be tuned by varying the geometry and dimension of the structures. We also demonstrate a polarization dependent Fano resonance in a modified structure of concentric ring apertures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20(3), 3345–3352 (2012).
    [CrossRef] [PubMed]
  2. C. Debus, P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [CrossRef]
  3. N. Soltani, É. Lheurette, D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys. 112(12), 124509 (2012).
    [CrossRef]
  4. H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
    [CrossRef] [PubMed]
  5. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [CrossRef] [PubMed]
  6. E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
    [CrossRef]
  7. J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express 19(27), 26666–26671 (2011).
    [CrossRef] [PubMed]
  8. R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
    [CrossRef] [PubMed]
  9. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  10. R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [CrossRef] [PubMed]
  11. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [CrossRef] [PubMed]
  12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [CrossRef] [PubMed]
  13. H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
    [CrossRef] [PubMed]
  14. Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
    [CrossRef] [PubMed]
  15. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [CrossRef] [PubMed]
  16. A. Artar, A. A. Yanik, H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11(4), 1685–1689 (2011).
    [CrossRef] [PubMed]
  17. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  18. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [CrossRef] [PubMed]
  19. Y. Zhang, T. Q. Jia, H. M. Zhang, Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37(23), 4919–4921 (2012).
    [CrossRef] [PubMed]
  20. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [CrossRef] [PubMed]
  21. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
    [CrossRef]
  22. Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
    [CrossRef]
  23. S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013).
    [CrossRef]
  24. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
    [CrossRef] [PubMed]
  25. J. Kim, R. Soref, W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
    [CrossRef] [PubMed]
  26. J. Shu, W. Gao, Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013).
    [CrossRef] [PubMed]
  27. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  28. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  29. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  30. N. K. Grady, N. J. Halas, P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
    [CrossRef]

2013 (2)

S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013).
[CrossRef]

J. Shu, W. Gao, Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013).
[CrossRef] [PubMed]

2012 (4)

2011 (5)

R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express 19(27), 26666–26671 (2011).
[CrossRef] [PubMed]

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

2010 (6)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

J. Kim, R. Soref, W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[CrossRef] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

2009 (2)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

2008 (4)

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[CrossRef] [PubMed]

2007 (3)

C. Debus, P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

2004 (1)

N. K. Grady, N. J. Halas, P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

1985 (1)

Abbott, D.

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Ahn, K. J.

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Alexander, R. W.

Al-Naib, I. A. I.

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

Astley, V.

Averitt, R. D.

Azad, A. K.

Bahk, Y.-M.

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Bell, R. J.

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Bhaskaran, M.

Bolivar, P. H.

C. Debus, P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

Bonn, M.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Bravo-Abad, J.

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Buchwald, W. R.

Chen, H.-T.

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Choi, J.-W.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Debus, C.

C. Debus, P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

Dong, Z.-G.

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Fedotov, V. A.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Fu, Y. H.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

Fumeaux, C.

Gao, W.

García-Vidal, F. J.

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Gómez Rivas, J.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Gossard, A. C.

Grady, N. K.

N. K. Grady, N. J. Halas, P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

Guan, C. Y.

S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Hendry, E.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Jia, T. Q.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, D.-S.

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, H.-T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, J.

Koch, M.

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Kuipers, L.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Kyoung, J.

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Lei, S.-Y.

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

Lheurette, É.

N. Soltani, É. Lheurette, D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys. 112(12), 124509 (2012).
[CrossRef]

Li, T.

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

Lin, H.

Lippens, D.

N. Soltani, É. Lheurette, D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys. 112(12), 124509 (2012).
[CrossRef]

Liu, H.

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Liu, R.

S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013).
[CrossRef]

Lockyear, M. J.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Long, L. L.

Lu, H.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Martín-Moreno, L.

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Mittleman, D. M.

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Nickel, D.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

O’Hara, J. F.

Ordal, M. A.

Papasimakis, N.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Park, H.-R.

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Park, Q.-H.

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Qiu, C.

Querry, M. R.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Serita, K.

Shah, C. M.

Shi, J. H.

S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013).
[CrossRef]

Shu, J.

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Singh, R.

Sobhani, H.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Soltani, N.

N. Soltani, É. Lheurette, D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys. 112(12), 124509 (2012).
[CrossRef]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Soref, R.

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Sriram, S.

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Taylor, A. J.

Tonouchi, M.

Trugman, S. A.

Tsai, D. P.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Vandenbosch, G. A. E.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Wang, F.-M.

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Withayachumnankul, W.

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Xu, M.-X.

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

Xu, Q.

Xu, Z. Z.

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

Yu, S. W.

S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013).
[CrossRef]

Zhang, H. M.

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, W.

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, Y.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, S.-N.

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

Zhu, Z.

S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013).
[CrossRef]

ACS Nano (2)

H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[CrossRef]

Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[CrossRef]

C. Debus, P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

N. K. Grady, N. J. Halas, P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

J. Appl. Phys. (1)

N. Soltani, É. Lheurette, D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys. 112(12), 124509 (2012).
[CrossRef]

J. Opt. (1)

S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013).
[CrossRef]

Nano Lett. (4)

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Opt. Express (8)

W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20(3), 3345–3352 (2012).
[CrossRef] [PubMed]

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[CrossRef] [PubMed]

J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express 19(27), 26666–26671 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

J. Kim, R. Soref, W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
[CrossRef] [PubMed]

J. Shu, W. Gao, Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Other (1)

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM pictures of fabricated concentric two-ring apertures in the gold film. (a) and (b): r1 = 60 µm, r2 = 56 µm, w = 2 µm, g = 2 µm. (c) and (d): r1 = 50 µm, r2 = 44 µm, w = 2 µm, g = 4 µm.

Fig. 2
Fig. 2

Measured (solid lines) and simulated (dashed lines) transmission spectra of concentric 2-ring apertures in gold film. Same color stands for same structure for experiment and simulation. The spectra are normalized to the transmission of air. Arrows at the top of the spectra marks the frequency locations of Fano dips. (a) Concentric 2-ring apertures with different radii. (b) Concentric 2-ring apertures with different gaps. Red dotted line in (a) shows simulated absorption spectra of concentric 2-ring apertures with r1 = 50 µm, g = 2 µm.

Fig. 3
Fig. 3

(a) Measured transmission spectrum (black dotted lines) of the concentric two-ring apertures with r1 = 50 µm, g = 4 µm can be well fitted by the analytical model (red solid line). The black arrow on the bottom and red arrow on the top indicate the resonant frequency locations of the bright mode and dark mode, respectively. (b) The energy in the dark mode (the red line) and the bright mode (the black line), which are normalized to the maximum energy in the dark mode.

Fig. 4
Fig. 4

(a) Scheme of charge motions for the bright mode (a), the dark mode without (b) and with the cut (c) between the apertures. (d) A SEM picture of fabricated concentric two-ring apertures with a cut between the apertures. (e) Measured transmission spectra of concentric two-ring apertures with a cut in the metal between the two apertures, as shown in (d), with different polarization of incident light. The transmission is normalized to the transmission of air. Insets of (a) and (b) show simulated charge distributions of bright mode and dark mode for concentric ring apertures with much smaller dimension.

Metrics