Abstract

We present a fabrication route for centimeter-scale two-dimensional defect-free photonic crystal slabs with quality factors bigger than 10,000 in the visible, together with a unique way to quantify their quality factors. We fabricate Si3N4 photonic crystal slabs, and perform an angle-resolved reflection measurement. This measurement data is used to retrieve the quality factors of the slabs by fitting it to a model based on temporal coupled-mode theory. The macroscopic nature of the structure and the high quality factors of their resonances could open up new opportunities for realizing efficient macroscale optoelectronic devices such as sensors, lasers, and energy harvesting systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [CrossRef] [PubMed]
  4. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
    [CrossRef]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  6. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
    [CrossRef] [PubMed]
  7. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
    [CrossRef]
  8. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
    [CrossRef]
  9. S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).
  10. B.-S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [CrossRef]
  11. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
    [CrossRef] [PubMed]
  12. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [CrossRef] [PubMed]
  13. T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, H. Smith, “Microring-resonator-based add-drop filters in sin: fabrication and analysis,” Opt. Express 12, 1437–1442 (2004).
    [CrossRef] [PubMed]
  14. T. Barwicz, M. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol. 24, 2207–2218 (2006).
    [CrossRef]
  15. J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
    [CrossRef] [PubMed]
  16. C. P. Fucetola, H. Korre, K. K. Berggren, “Low-cost interference lithography,” J. Vac. Sci. Technol. B 27, 2958–2961 (2009).
    [CrossRef]
  17. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
    [CrossRef]
  18. H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Physica E 11, 104–109 (2001).
    [CrossRef]
  19. J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18, 1469–1478 (2010).
    [CrossRef] [PubMed]
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  21. A. Buxbaum, M. W. Montgomery, U.S. Patent No. 6,582,861 B2 (24 Jun. 2003).
  22. S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by fano resonances,” Opt. Express 19, 1539–1562 (2011).
    [CrossRef] [PubMed]
  23. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, P. Viktorovitch, “Slow bloch mode confinement in 2d photonic crystals for surface operating devices,” Opt. Express 16, 3136–3145 (2008).
    [CrossRef] [PubMed]
  24. M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
    [CrossRef]
  25. A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, P. Viktorovitch, “Theoretical and experimental study of the suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15, 704–713 (2007).
    [CrossRef] [PubMed]
  26. M. Gehl, R. Gibson, J. Hendrickson, A. Homyk, A. Saynatjoki, T. Alasaarela, L. Karvonen, A. Tervonen, S. Honkanen, S. Zandbergen, B. C. Richards, J. D. Olitzky, A. Scherer, G. Khitrova, H. M. Gibbs, J.-Y. Kim, Y.-H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, A55–A59 (2012).
    [CrossRef]
  27. E. Jaquay, L. J. Martínez, C. A. Mejia, M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13, 2290–2294 (2013).
    [CrossRef] [PubMed]

2013 (1)

E. Jaquay, L. J. Martínez, C. A. Mejia, M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13, 2290–2294 (2013).
[CrossRef] [PubMed]

2012 (2)

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

M. Gehl, R. Gibson, J. Hendrickson, A. Homyk, A. Saynatjoki, T. Alasaarela, L. Karvonen, A. Tervonen, S. Honkanen, S. Zandbergen, B. C. Richards, J. D. Olitzky, A. Scherer, G. Khitrova, H. M. Gibbs, J.-Y. Kim, Y.-H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, A55–A59 (2012).
[CrossRef]

2011 (2)

S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by fano resonances,” Opt. Express 19, 1539–1562 (2011).
[CrossRef] [PubMed]

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

2010 (3)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18, 1469–1478 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
[CrossRef]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, P. Viktorovitch, “Slow bloch mode confinement in 2d photonic crystals for surface operating devices,” Opt. Express 16, 3136–3145 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

2005 (1)

B.-S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

2004 (1)

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

2002 (3)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

2001 (1)

H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Physica E 11, 104–109 (2001).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Agarwal, A.

Agio, M.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Ahn, S.

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Alasaarela, T.

Albert, J. P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Alija, A. R.

Andreani, L. C.

A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, P. Viktorovitch, “Theoretical and experimental study of the suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15, 704–713 (2007).
[CrossRef] [PubMed]

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Arakawa, Y.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

Asano, T.

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Augendre, E.

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

Barwicz, T.

Bellutti, P.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Belotti, M.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Benson, T.

T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.

Berggren, K. K.

C. P. Fucetola, H. Korre, K. K. Berggren, “Low-cost interference lithography,” J. Vac. Sci. Technol. B 27, 2958–2961 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bettotti, P.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Boriskina, S.

T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.

Bravo-Abad, J.

Buxbaum, A.

A. Buxbaum, M. W. Montgomery, U.S. Patent No. 6,582,861 B2 (24 Jun. 2003).

Carlie, N.

Cassagne, D.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Chen, G. X.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
[CrossRef]

Chong, T. C.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
[CrossRef]

Chong, Y.

Chua, S. L.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Chua, S.-L.

Cioccio, L. D.

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

d’Yerville, M. L. V.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Drouard, E.

Feng, N.-N.

Ferrier, L.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Fucetola, C. P.

C. P. Fucetola, H. Korre, K. K. Berggren, “Low-cost interference lithography,” J. Vac. Sci. Technol. B 27, 2958–2961 (2009).
[CrossRef]

Gaburro, Z.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Galli, M.

A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, P. Viktorovitch, “Theoretical and experimental study of the suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15, 704–713 (2007).
[CrossRef] [PubMed]

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Gehl, M.

Gibbs, H. M.

Gibson, R.

Greedy, S.

T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.

Guizzetti, G.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Hagino, H.

Haus, H.

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Hendrickson, J.

Homyk, A.

Hong, M. H.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
[CrossRef]

Honkanen, S.

Hu, J.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ippen, E.

Ippen, E. P.

Ishida, S.

Iwamoto, S.

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Jaquay, E.

E. Jaquay, L. J. Martínez, C. A. Mejia, M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13, 2290–2294 (2013).
[CrossRef] [PubMed]

Jeon, H.

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

Joannopoulos, J. D.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Karvonen, L.

Khitrova, G.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, J.-S.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Kim, J.-Y.

Kim, S.

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

Kimerling, L.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

Korre, H.

C. P. Fucetola, H. Korre, K. K. Berggren, “Low-cost interference lithography,” J. Vac. Sci. Technol. B 27, 2958–2961 (2009).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Kumagai, N.

Kwon, S.-H.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Lee, J.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y.-H.

Lee, Y.-J.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Letatre, X.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Lui, A.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Marabelli, F.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Martínez, L. J.

Mejia, C. A.

E. Jaquay, L. J. Martínez, C. A. Mejia, M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13, 2290–2294 (2013).
[CrossRef] [PubMed]

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Montgomery, M. W.

A. Buxbaum, M. W. Montgomery, U.S. Patent No. 6,582,861 B2 (24 Jun. 2003).

Nakata, Y.

Negro, L. D.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Noda, S.

Nomura, M.

Nosich, A.

T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Olitzky, J. D.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Patrini, M.

A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, P. Viktorovitch, “Theoretical and experimental study of the suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15, 704–713 (2007).
[CrossRef] [PubMed]

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Pavesi, L.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Petit, L.

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Politi, A.

Popovic, M.

Postigo, P. A.

Povinelli, M. L.

E. Jaquay, L. J. Martínez, C. A. Mejia, M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13, 2290–2294 (2013).
[CrossRef] [PubMed]

Qiu, W.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Rakich, P.

Rakich, P. T.

Regreny, P.

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Richards, B. C.

Richardson, K.

Rojo-Romeo, P.

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, P. Viktorovitch, “Slow bloch mode confinement in 2d photonic crystals for surface operating devices,” Opt. Express 16, 3136–3145 (2008).
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ryu, H.-Y.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Sánchez-Dehesa, J.

Sato, Y.

Saynatjoki, A.

Scherer, A.

Seassal, C.

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, P. Viktorovitch, “Theoretical and experimental study of the suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15, 704–713 (2007).
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Sewell, P.

T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.

Shapira, O.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Shi, L. P.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
[CrossRef]

Smith, H.

Smith, H. I.

Soljacic, M.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by fano resonances,” Opt. Express 19, 1539–1562 (2011).
[CrossRef] [PubMed]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

Stone, A. D.

Sugiya, T.

Takahashi, Y.

Tan, H. L.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
[CrossRef]

Tanaka, Y.

Tervonen, A.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Viktorovitch, P.

Vukovic, A.

T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.

Watanabe, K.

Watts, M.

Watts, M. R.

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Xie, Q.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Zandbergen, S.

Zhen, B.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

J. Alloys Compd. (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

C. P. Fucetola, H. Korre, K. K. Berggren, “Low-cost interference lithography,” J. Vac. Sci. Technol. B 27, 2958–2961 (2009).
[CrossRef]

Nano Lett. (1)

E. Jaquay, L. J. Martínez, C. A. Mejia, M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13, 2290–2294 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Nat. Photon. (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, H. Smith, “Microring-resonator-based add-drop filters in sin: fabrication and analysis,” Opt. Express 12, 1437–1442 (2004).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006).
[CrossRef] [PubMed]

A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, P. Viktorovitch, “Theoretical and experimental study of the suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15, 704–713 (2007).
[CrossRef] [PubMed]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, P. Viktorovitch, “Slow bloch mode confinement in 2d photonic crystals for surface operating devices,” Opt. Express 16, 3136–3145 (2008).
[CrossRef] [PubMed]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18, 1469–1478 (2010).
[CrossRef] [PubMed]

S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by fano resonances,” Opt. Express 19, 1539–1562 (2011).
[CrossRef] [PubMed]

Opt.Express (1)

S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).

Phys. Rev. B (1)

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Physica E (1)

H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Physica E 11, 104–109 (2001).
[CrossRef]

Science (2)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Other (2)

T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.

A. Buxbaum, M. W. Montgomery, U.S. Patent No. 6,582,861 B2 (24 Jun. 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a)–(d) Schematic outline of the process flow: (a) Deposition of the resist layers, where ARC′ stands for a thin ARC layer, (b) pattern definition by interference lithography followed by development, (c) pattern transfer to the Si3N4 layer by RIE, (d) removal of remaining resist stack. (e) Reflectivity at the bottom of the PR layer as a function of the thickness of the ARC layer. It is important to minimize the amount of light reflected back into the PR layer because it forms a vertical standing wave with the incident light. This produces poor sidewall profiles after development, and hence low Q’s of resonances. The green and red curves represent the reflectivity with and without 45 nm of ARC′ layer, respectively. The existence of the ARC′ layer reduced overall reflectivity by roughly half and so did the minimum reflectivity by a factor of one hundred.

Fig. 2
Fig. 2

(a) Schematic drawing of the reflectivity measurement setup. Enlarged view of reflection path of light from the PhC sample is also represented on the right. (b) Image of an exposed 4-inch wafer after development. The two diffraction beams were produced by two fiber light beams. This shows the 2D periodic pattern was defined over the entire area of the wafer. (c) Top-view scanning electron micrograph of the final sample with periodicity of 375 nm.

Fig. 3
Fig. 3

(a) The band diagram calculated with MEEP. The frequency is plotted along the x-axis, and the wave vector is converted to the angle and plotted along the y-axis. The numbers inside the graph ( Q rad th) represent the theoretical radiative quality factors of each mode calculated with MEEP. The two lines on the left are low Q modes degenerated at the Γ point, and the line on the right is a high Q mode whose radiative Q diverges at the Γ point. (b) Experimental reflectivity data measured at 0.2°. The frequencies of the peaks agree well with the calculation result. (c) The high Q peak in (b) was measured again with a higher resolution, and the data was fitted to the reflectivity formula derived from coupled mode theory. The red dots are the measured data, the blue curve is the fitted background, and the green curve is the final fitting result.

Fig. 4
Fig. 4

(a) After development, sidewall profiles were wavy and slanted. (b) After O2 RIE process, sidewall profiles became more vertical and straight.

Tables (1)

Tables Icon

Table 1 Fitted Qtotal of various PhC samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| r PhC | 2 = | r d γ t ( γ t r d + γ b t d ) i ( ω ω 0 ) + γ t 2 / 2 + γ b 2 / 2 + 1 / τ loss | 2

Metrics