Abstract

Wide field-of-view gigapixel imaging systems capable of diffraction-limited resolution and video-rate acquisition have a broad range of applications, including sports event broadcasting, security surveillance, astronomical observation, and bioimaging. The complexity of the system integration of such devices demands precision optical components that are fully characterized and qualified before being integrated into the final system. In this work, we present component and assembly level characterizations of microcameras in our first gigapixel camera, the AWARE-2. Based on the results of these measurements, we revised the optical design and assembly procedures to construct the second generation system, the AWARE-2 Retrofit, which shows significant improvement in image quality.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
    [CrossRef] [PubMed]
  2. D. J. Brady, N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
    [CrossRef] [PubMed]
  3. D. L. Marks, D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” Imaging Systems 2010, paper ITuC2 (OSA, 2010).
    [CrossRef]
  4. H. S. Son, D. L. Marks, J. Hahn, J. Kim, D. J. Brady, “Design of a spherical focal surface using close-packed relay optics,” Opt. Express 19, 16132–16138 (2011).
    [CrossRef] [PubMed]
  5. H. S. Son, A. Johnson, R. A. Stack, J. M. Shaw, P. McLaughlin, D. L. Marks, D. J. Brady, J. Kim, “Optomechanical design of multiscale gigapixel digital camera,” Appl. Opt. 52, 1541–1549 (2013).
    [CrossRef] [PubMed]
  6. D. R. Golish, E. M. Vera, K. J. Kelly, Q. Gong, P. A. Jansen, J. M. Hughes, D. S. Kittle, D. J. Brady, M. E. Gehm, “Development of a scalable image formation pipeline for multiscale gigapixel photography,” Opt. Express 20, 22048–22062 (2012).
    [CrossRef] [PubMed]
  7. S.-H. Youn, D. L. Marks, P. O. McLaughlin, D. J. Brady, J. Kim, “Efficient testing methodologies for microcameras in a gigapixel imaging system,” Proc. SPIE 8788, 87883B (2013).
    [CrossRef]
  8. D. S. Kittle, D. L. Marks, H. S. Son, J. Kim, D. J. Brady, “A testbed for wide-field, high-resolution, gigapixel-class cameras,” Rev. Sci. Instrum. 84, 053107 (2013).
    [CrossRef] [PubMed]
  9. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001).
    [CrossRef]
  10. T. Nakamura, D. S. Kittle, S. H. Youn, S. D. Feller, J. Tanida, D. J. Brady, “Autofocus for multiscale gigapixel camera,” Appl. Opt. 52, 8146–8153 (2013).
    [CrossRef]
  11. S. Bäumer, Handbook of Plastic Optics (Wiley-VCH, 2010).
    [CrossRef]
  12. D. G. LeGrand, J. T. Bendler, Handbook of Polycarbonate Science and Technology (Marcel Dekker, 2000).
  13. H. E. Lai, P. J. Wang, “Study of process parameters on optical qualities for injection-molded plastic lenses,” Appl. Opt. 47, 2017–2027 (2008).
    [CrossRef] [PubMed]
  14. ASTM International D4093-95 for the standard measurement of birefringence.
  15. L. Deck, P. de Groot, “High-speed non contact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  16. B. Dörband, H. Müller, H. Gross, Handbook of Optical Systems, Metrology of Optical Components and Systems (Wiley-VCH, 2012).
  17. S. Matsuda, T. Nitoh, “Flare as Applied to Photographic Lenses,” Appl. Opt. 11, 1850–1856 (1972).
    [CrossRef] [PubMed]
  18. B. Ma, K. Sharma, K. P. Thompson, J. P. Rolland, “Mobile device camera design with Q-type polynomials to achieve higher production yield,” Opt. Express 21, 17454–17463 (2013).
    [CrossRef] [PubMed]

2013

2012

2011

2009

2008

1994

1972

Bäumer, S.

S. Bäumer, Handbook of Plastic Optics (Wiley-VCH, 2010).
[CrossRef]

Bendler, J. T.

D. G. LeGrand, J. T. Bendler, Handbook of Polycarbonate Science and Technology (Marcel Dekker, 2000).

Boreman, G. D.

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001).
[CrossRef]

Brady, D. J.

S.-H. Youn, D. L. Marks, P. O. McLaughlin, D. J. Brady, J. Kim, “Efficient testing methodologies for microcameras in a gigapixel imaging system,” Proc. SPIE 8788, 87883B (2013).
[CrossRef]

D. S. Kittle, D. L. Marks, H. S. Son, J. Kim, D. J. Brady, “A testbed for wide-field, high-resolution, gigapixel-class cameras,” Rev. Sci. Instrum. 84, 053107 (2013).
[CrossRef] [PubMed]

T. Nakamura, D. S. Kittle, S. H. Youn, S. D. Feller, J. Tanida, D. J. Brady, “Autofocus for multiscale gigapixel camera,” Appl. Opt. 52, 8146–8153 (2013).
[CrossRef]

H. S. Son, A. Johnson, R. A. Stack, J. M. Shaw, P. McLaughlin, D. L. Marks, D. J. Brady, J. Kim, “Optomechanical design of multiscale gigapixel digital camera,” Appl. Opt. 52, 1541–1549 (2013).
[CrossRef] [PubMed]

D. R. Golish, E. M. Vera, K. J. Kelly, Q. Gong, P. A. Jansen, J. M. Hughes, D. S. Kittle, D. J. Brady, M. E. Gehm, “Development of a scalable image formation pipeline for multiscale gigapixel photography,” Opt. Express 20, 22048–22062 (2012).
[CrossRef] [PubMed]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef] [PubMed]

H. S. Son, D. L. Marks, J. Hahn, J. Kim, D. J. Brady, “Design of a spherical focal surface using close-packed relay optics,” Opt. Express 19, 16132–16138 (2011).
[CrossRef] [PubMed]

D. J. Brady, N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
[CrossRef] [PubMed]

D. L. Marks, D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” Imaging Systems 2010, paper ITuC2 (OSA, 2010).
[CrossRef]

de Groot, P.

Deck, L.

Dörband, B.

B. Dörband, H. Müller, H. Gross, Handbook of Optical Systems, Metrology of Optical Components and Systems (Wiley-VCH, 2012).

Feller, S. D.

T. Nakamura, D. S. Kittle, S. H. Youn, S. D. Feller, J. Tanida, D. J. Brady, “Autofocus for multiscale gigapixel camera,” Appl. Opt. 52, 8146–8153 (2013).
[CrossRef]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef] [PubMed]

Gehm, M. E.

Golish, D. R.

Gong, Q.

Gross, H.

B. Dörband, H. Müller, H. Gross, Handbook of Optical Systems, Metrology of Optical Components and Systems (Wiley-VCH, 2012).

Hagen, N.

Hahn, J.

Hughes, J. M.

Jansen, P. A.

Johnson, A.

Kelly, K. J.

Kim, J.

H. S. Son, A. Johnson, R. A. Stack, J. M. Shaw, P. McLaughlin, D. L. Marks, D. J. Brady, J. Kim, “Optomechanical design of multiscale gigapixel digital camera,” Appl. Opt. 52, 1541–1549 (2013).
[CrossRef] [PubMed]

D. S. Kittle, D. L. Marks, H. S. Son, J. Kim, D. J. Brady, “A testbed for wide-field, high-resolution, gigapixel-class cameras,” Rev. Sci. Instrum. 84, 053107 (2013).
[CrossRef] [PubMed]

S.-H. Youn, D. L. Marks, P. O. McLaughlin, D. J. Brady, J. Kim, “Efficient testing methodologies for microcameras in a gigapixel imaging system,” Proc. SPIE 8788, 87883B (2013).
[CrossRef]

H. S. Son, D. L. Marks, J. Hahn, J. Kim, D. J. Brady, “Design of a spherical focal surface using close-packed relay optics,” Opt. Express 19, 16132–16138 (2011).
[CrossRef] [PubMed]

Kittle, D. S.

D. S. Kittle, D. L. Marks, H. S. Son, J. Kim, D. J. Brady, “A testbed for wide-field, high-resolution, gigapixel-class cameras,” Rev. Sci. Instrum. 84, 053107 (2013).
[CrossRef] [PubMed]

T. Nakamura, D. S. Kittle, S. H. Youn, S. D. Feller, J. Tanida, D. J. Brady, “Autofocus for multiscale gigapixel camera,” Appl. Opt. 52, 8146–8153 (2013).
[CrossRef]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef] [PubMed]

D. R. Golish, E. M. Vera, K. J. Kelly, Q. Gong, P. A. Jansen, J. M. Hughes, D. S. Kittle, D. J. Brady, M. E. Gehm, “Development of a scalable image formation pipeline for multiscale gigapixel photography,” Opt. Express 20, 22048–22062 (2012).
[CrossRef] [PubMed]

Lai, H. E.

LeGrand, D. G.

D. G. LeGrand, J. T. Bendler, Handbook of Polycarbonate Science and Technology (Marcel Dekker, 2000).

Ma, B.

Marks, D. L.

D. S. Kittle, D. L. Marks, H. S. Son, J. Kim, D. J. Brady, “A testbed for wide-field, high-resolution, gigapixel-class cameras,” Rev. Sci. Instrum. 84, 053107 (2013).
[CrossRef] [PubMed]

S.-H. Youn, D. L. Marks, P. O. McLaughlin, D. J. Brady, J. Kim, “Efficient testing methodologies for microcameras in a gigapixel imaging system,” Proc. SPIE 8788, 87883B (2013).
[CrossRef]

H. S. Son, A. Johnson, R. A. Stack, J. M. Shaw, P. McLaughlin, D. L. Marks, D. J. Brady, J. Kim, “Optomechanical design of multiscale gigapixel digital camera,” Appl. Opt. 52, 1541–1549 (2013).
[CrossRef] [PubMed]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef] [PubMed]

H. S. Son, D. L. Marks, J. Hahn, J. Kim, D. J. Brady, “Design of a spherical focal surface using close-packed relay optics,” Opt. Express 19, 16132–16138 (2011).
[CrossRef] [PubMed]

D. L. Marks, D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” Imaging Systems 2010, paper ITuC2 (OSA, 2010).
[CrossRef]

Matsuda, S.

McLaughlin, P.

McLaughlin, P. O.

S.-H. Youn, D. L. Marks, P. O. McLaughlin, D. J. Brady, J. Kim, “Efficient testing methodologies for microcameras in a gigapixel imaging system,” Proc. SPIE 8788, 87883B (2013).
[CrossRef]

Müller, H.

B. Dörband, H. Müller, H. Gross, Handbook of Optical Systems, Metrology of Optical Components and Systems (Wiley-VCH, 2012).

Nakamura, T.

Nitoh, T.

Rolland, J. P.

Sharma, K.

Shaw, J. M.

Son, H. S.

Stack, R. A.

H. S. Son, A. Johnson, R. A. Stack, J. M. Shaw, P. McLaughlin, D. L. Marks, D. J. Brady, J. Kim, “Optomechanical design of multiscale gigapixel digital camera,” Appl. Opt. 52, 1541–1549 (2013).
[CrossRef] [PubMed]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef] [PubMed]

Tanida, J.

Thompson, K. P.

Vera, E. M.

Wang, P. J.

Youn, S. H.

Youn, S.-H.

S.-H. Youn, D. L. Marks, P. O. McLaughlin, D. J. Brady, J. Kim, “Efficient testing methodologies for microcameras in a gigapixel imaging system,” Proc. SPIE 8788, 87883B (2013).
[CrossRef]

Appl. Opt.

Nature

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef] [PubMed]

Opt. Express

Proc. SPIE

S.-H. Youn, D. L. Marks, P. O. McLaughlin, D. J. Brady, J. Kim, “Efficient testing methodologies for microcameras in a gigapixel imaging system,” Proc. SPIE 8788, 87883B (2013).
[CrossRef]

Rev. Sci. Instrum.

D. S. Kittle, D. L. Marks, H. S. Son, J. Kim, D. J. Brady, “A testbed for wide-field, high-resolution, gigapixel-class cameras,” Rev. Sci. Instrum. 84, 053107 (2013).
[CrossRef] [PubMed]

Other

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001).
[CrossRef]

D. L. Marks, D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” Imaging Systems 2010, paper ITuC2 (OSA, 2010).
[CrossRef]

S. Bäumer, Handbook of Plastic Optics (Wiley-VCH, 2010).
[CrossRef]

D. G. LeGrand, J. T. Bendler, Handbook of Polycarbonate Science and Technology (Marcel Dekker, 2000).

B. Dörband, H. Müller, H. Gross, Handbook of Optical Systems, Metrology of Optical Components and Systems (Wiley-VCH, 2012).

ASTM International D4093-95 for the standard measurement of birefringence.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Optical design principle of AWARE-2 camera. 3D renderings of (b) AWARE-2 microcamera and (c) AWARE-2 Retrofit microcamera discussed in this work. See the main text for the optical design differences between the two microcameras. The internal structures of the barrels are shown for illustration. Baffles that cut off unnecessary stray light is effectively implemented by minimizing the lens apertures and the inner diameter of the barrel.

Fig. 2
Fig. 2

Image sensor MTF characterization. (a) Experimental setup to measure the sensor MTF. (b) The experimental MTF of monochromatic (red) and color (blue) image sensors measured with broadband light source as a function of spatial frequency in units of line pairs per mm (lp/mm). The shade illustrates uncertainty of the experiment, obtained from repetition of the experiment. (c) and (d) show typical MTF measurements as a function of wavelength for monochromatic and color sensors, respectively.

Fig. 3
Fig. 3

Birefringence measurement and simulation. (a) Circular polariscope for birefringence measurement. BF: bandpass filter. P: polarizer. QWP: quarter-wave plate. A: analyzer. (b) False color image of the stress fringe pattern observed on the polycarbonate optical element used in the AWARE-2 micro-optics. The white vertical line shows the cross-section intensity profile used for birefringence analysis. The color indicates the pixel value. (c) The cross-section intensity profile (blue) and the phase retardation (green) of (b). (d) The simulated MTF (blue) influenced by the observed birefringence, in comparison with the nominal MTF (red).

Fig. 4
Fig. 4

Fringe pattern images of prototype lenses. (a) A molded lens with less birefringent plastic material, OKP4. The white circles indicate the outer edge of the lens and the designed clear aperture. The arrow indicates the thermal stress that occurred at the gate during the injection molding process, located outside the designed aperture. (b) A glass lens used in the AWARE-2 Retrofit microcamera, showing no visible fringe. The color bar indicates the pixel value in the images.

Fig. 5
Fig. 5

Surface form measurements and MTF simulation of the measured surface. (a) Comparison of the experimental profile with the nominal design. (b) Surface model with fit parameters, C and K to obtain the realistic representation of the measured lens. Note that 2D plots in (a) and (b) were obtained by taking the cross-section of the 3D surface with the xz plane. (c) Simulated MTF (black dots) impacted by surface deviation of the prototype lens, plotted together with the MTF for the nominal design (red line) and the diffraction-limited curve (dashed line).

Fig. 6
Fig. 6

(a) Test jig used to test AWARE-2 and AWARE-2 Retrofit microcameras. Broadband light source is filtered by a bandpass filter at 590 nm in order to minimize the chromatic aberrations and illuminates the test target placed at the nominal object plane of the microcamera under test. The ground-glass diffuser inserted after the bandpass filter provides uniform illumination. (b) Image of the 1951 USAF resolution test chart, normalized by the maximum pixel value, taken with the AWARE-2 microcamera. Stray light creates a bright ring at the edge of the field (cross-section shown by the red trace in the inset), and reduces the contrast across the image of a dark object (black trace in the inset). (c) Normalized image of the Imatest spatial frequency response (SFR) chart taken with the AWARE-2 Retrofit microcamera. The cross-sections in the inset shows absence of bright artifact ring (red trace), and a much higher contrast (black trace).

Fig. 7
Fig. 7

On-axis experimental MTF measurements plotted with diffraction-limited (dashed), nominal micro-optic design (red), and sensor MTF values (blue) for three microcamera designs. (a) AWARE-2, (b) AWARE-2A, and (c) AWARE-2 Retrofit microcamera. (a) and (b) were simulated and measured with broadband light illumination, and (c) was simulated and measured with 590-nm light. Note that (a) and (b) use monochromatic sensors and (c) uses a Bayer sensor, where the plotted MTF was obtained from linear interpolation of the 550-nm and 630-nm measurements in Fig. 2(d).

Fig. 8
Fig. 8

(a) A color map of spatial frequency at MTF 20% measured in a typical AWARE-2 Retrofit microcamera at optimal focus. The plot was generated by linearly interpolating the experimental data (circles) of spatial frequencies at 20% of the MTF. The data points in black (white) circles are measured from vertical (horizontal) slanted edges. (b) Measured MTF curves at the best (green dots) and worst (orange dots) optical performance, corresponding to location 1 and 2 shown in (a), respectively.

Tables (1)

Tables Icon

Table 1 Fitting the surface form of a molded prototype lens.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z ( x , y ) = C [ ( x x 0 ) 2 + ( y y 0 ) 2 ] 1 + 1 ( 1 + K ) C 2 [ ( x x 0 ) 2 + ( y y 0 ) 2 ] + A ( x x 0 ) + B ( y y 0 ) + z 0 ,
VGI = I stray I stray + I signal ,

Metrics