Abstract

The reflection and transmission of an incident Gaussian beam by a uniaxial anisotropic slab are investigated, by expanding the incident Gaussian beam, reflected beam, internal beam as well as transmitted beam in terms of cylindrical vector wave functions. The unknown expansion coefficients are determined by virtue of the boundary conditions. For a localized beam model, numerical results are provided for the normalized field intensity distributions, and the propagation characteristics are discussed concisely.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Scattering of a spheroidal particle illuminated by a Gaussian beam

Yiping Han and Zhensen Wu
Appl. Opt. 40(15) 2501-2509 (2001)

Scattering of a Hermite–Gaussian beam field by a chiral sphere

Mitsuhiro Yokota, Sailing He, and Takashi Takenaka
J. Opt. Soc. Am. A 18(7) 1681-1689 (2001)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Graham and J. K. Lee, “Reflection and transmission from biaxially anisotropic-isotropic interfaces,” Prog. Electromagn. Res. 136, 681–702 (2013).
    [Crossref]
  2. J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Prog. Electromagn. Res. 127, 389–404 (2012).
    [Crossref]
  3. J. J. Stamnes and V. Dhayalan, “Double refraction of a Gaussian beam into a uniaxial crystal,” J. Opt. Soc. Am. A 29(4), 486–497 (2012).
    [Crossref] [PubMed]
  4. M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
    [Crossref] [PubMed]
  5. J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
    [Crossref]
  6. G. S. Sithambaranathan and J. J. Stamnes, “Analytical approach to the transmission of a Gaussian beam into a biaxial crystal,” Opt. Commun. 209(1–3), 55–67 (2002).
    [Crossref]
  7. G. S. Sithambaranathan and J. J. Stamnes, “Transmission of a Gaussian beam into a biaxial crystal,” J. Opt. Soc. Am. A 18(7), 1670–1677 (2001).
    [Crossref] [PubMed]
  8. H. Y. Zhang, Y. P. Han, and G. X. Han, “Expansion of the electromagnetic fields of a shaped beam in terms of cylindrical vector wave functions,” J. Opt. Soc. Am. B 24(6), 1383–1391 (2007).
    [Crossref]
  9. L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19(3), 1177–1179 (1979).
    [Crossref]
  10. G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beam in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am. A 16(7), 1641–1650 (1999).
    [Crossref]
  11. G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112(1), 1–27 (2011).
    [Crossref]
  12. H. Y. Zhang, Z. X. Huang, and Y. Shi, “Internal and near-surface electromagnetic fields for a uniaxial anisotropic cylinder illuminated with a Gaussian beam,” Opt. Express 21(13), 15645–15653 (2013).
    [Crossref] [PubMed]

2013 (2)

J. W. Graham and J. K. Lee, “Reflection and transmission from biaxially anisotropic-isotropic interfaces,” Prog. Electromagn. Res. 136, 681–702 (2013).
[Crossref]

H. Y. Zhang, Z. X. Huang, and Y. Shi, “Internal and near-surface electromagnetic fields for a uniaxial anisotropic cylinder illuminated with a Gaussian beam,” Opt. Express 21(13), 15645–15653 (2013).
[Crossref] [PubMed]

2012 (2)

J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Prog. Electromagn. Res. 127, 389–404 (2012).
[Crossref]

J. J. Stamnes and V. Dhayalan, “Double refraction of a Gaussian beam into a uniaxial crystal,” J. Opt. Soc. Am. A 29(4), 486–497 (2012).
[Crossref] [PubMed]

2011 (1)

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112(1), 1–27 (2011).
[Crossref]

2009 (1)

2007 (1)

2005 (1)

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

2002 (1)

G. S. Sithambaranathan and J. J. Stamnes, “Analytical approach to the transmission of a Gaussian beam into a biaxial crystal,” Opt. Commun. 209(1–3), 55–67 (2002).
[Crossref]

2001 (1)

1999 (1)

1979 (1)

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19(3), 1177–1179 (1979).
[Crossref]

Davis, L. W.

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19(3), 1177–1179 (1979).
[Crossref]

Dhayalan, V.

J. J. Stamnes and V. Dhayalan, “Double refraction of a Gaussian beam into a uniaxial crystal,” J. Opt. Soc. Am. A 29(4), 486–497 (2012).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Dong, J. F.

J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Prog. Electromagn. Res. 127, 389–404 (2012).
[Crossref]

Frette, Ø.

Gouesbet, G.

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112(1), 1–27 (2011).
[Crossref]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beam in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am. A 16(7), 1641–1650 (1999).
[Crossref]

Graham, J. W.

J. W. Graham and J. K. Lee, “Reflection and transmission from biaxially anisotropic-isotropic interfaces,” Prog. Electromagn. Res. 136, 681–702 (2013).
[Crossref]

Gréhan, G.

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112(1), 1–27 (2011).
[Crossref]

Han, G. X.

Han, Y. P.

Huang, Z. X.

Jain, M.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Jiang, D.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Lee, J. K.

J. W. Graham and J. K. Lee, “Reflection and transmission from biaxially anisotropic-isotropic interfaces,” Prog. Electromagn. Res. 136, 681–702 (2013).
[Crossref]

Li, J.

J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Prog. Electromagn. Res. 127, 389–404 (2012).
[Crossref]

Lock, J. A.

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112(1), 1–27 (2011).
[Crossref]

Lotsberg, J. K.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Shi, Y.

Sithambaranathan, G. S.

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

G. S. Sithambaranathan and J. J. Stamnes, “Analytical approach to the transmission of a Gaussian beam into a biaxial crystal,” Opt. Commun. 209(1–3), 55–67 (2002).
[Crossref]

G. S. Sithambaranathan and J. J. Stamnes, “Transmission of a Gaussian beam into a biaxial crystal,” J. Opt. Soc. Am. A 18(7), 1670–1677 (2001).
[Crossref] [PubMed]

Stamnes, J. J.

Velauthapillai, D.

Zhang, H. Y.

Zhao, X.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112(1), 1–27 (2011).
[Crossref]

Opt. Commun. (2)

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

G. S. Sithambaranathan and J. J. Stamnes, “Analytical approach to the transmission of a Gaussian beam into a biaxial crystal,” Opt. Commun. 209(1–3), 55–67 (2002).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19(3), 1177–1179 (1979).
[Crossref]

Prog. Electromagn. Res. (2)

J. W. Graham and J. K. Lee, “Reflection and transmission from biaxially anisotropic-isotropic interfaces,” Prog. Electromagn. Res. 136, 681–702 (2013).
[Crossref]

J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Prog. Electromagn. Res. 127, 389–404 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometry of an incident Gaussian beam from free space on a uniaxial anisotropic slab.

Fig. 2
Fig. 2

| ( E i + E r ) / E 0 | 2 , | ( E 1 w + E 2 w ) / E 0 | 2 and | E t / E 0 | 2 for a uniaxial anisotropic slab illuminated by a TM polarized Gaussian beam.

Fig. 3
Fig. 3

Same model as in Fig. 2 but illuminated by a TE polarized Gaussian beam.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

E i = E 1 i + E 2 i
E 1 i = E 0 m= 0 π 2 [ I m,TE (ζ) m mλ (1) (h)+ I m,TM (ζ) n mλ (1) (h) ]exp(ihz)dζ
I m,TE = (i) m+1 k 0 n=| m | (nm)! (n+m)! 2n+1 2n(n+1) g n [ m 2 P n m (cosβ) sinβ P n m (cosζ) sinζ + d P n m (cosβ) dβ d P n m (cosζ) dζ ]
I m,TM = (i) m+1 k 0 m n=| m | (nm)! (n+m)! 2n+1 2n(n+1) g n [ P n m (cosβ) sinβ d P n m (cosζ) dζ + d P n m (cosβ) dβ P n m (cosζ) sinζ ]
g n = 1 1+2is z 0 / w 0 exp(i k 0 z 0 )exp[ s 2 (n+1/2) 2 1+2is z 0 / w 0 ]
E r = E 0 m= 0 π 2 [ a m ζ) m mλ (1) (h)+ b m (ζ) n mλ (1) (h) ]exp(ihz)dζ
E w = E 0 q=1 2 m= G mq ( θ k )[ A q e ( θ k ) m m λ q (1) + B q e ( θ k ) n m λ q (1) + C q e ( θ k ) l m λ q (1) ] e i h q z d θ k
a 1 2 = ω 2 ε t μ 0 , a 2 2 = ω 2 ε z μ 0
λ q = k q sin θ k , h q = k q cos θ k
k 1 = a 1 , k 2 = a 1 a 2 1 a 1 2 sin 2 θ k + a 2 2 cos 2 θ k
A 1 e ( θ k )=1, B 1 e ( θ k )= C 1 e ( θ k )= A 2 e ( θ k )=0
B 2 e ( θ k )=i a 1 2 sin 2 θ k + a 2 2 cos 2 θ k a 1 2 sin θ k
C 2 e ( θ k )= a 1 2 a 2 2 a 1 2 sin θ k cos θ k
E 1 w = E 0 q=1 2 m= 0 π 2 E mq (ζ)[ α q e (ζ) m mλ (1) ( h q )+ β q e (ζ) n mλ (1) ( h q )+ γ q e (ζ) l mλ (1) ( h q )] e i h q z dζ
h 1 = a 1 2 λ 2 , h 2 = a 1 a 2 a 2 2 λ 2
k 1 = a 1 , k 2 = 1 a 2 a 1 2 a 2 2 ( a 1 2 a 2 2 ) λ 2
α 1 e (ζ)=1, β 1 e (ζ)= γ 1 e (ζ)= α 2 e (ζ)=0
β 2 e (ζ)=i a 2 3 λ 1 a 1 2 a 2 2 ( a 1 2 a 2 2 ) λ 2
γ 2 e (ζ)= ( a 1 2 a 2 2 ) a 2 a 1 λ a 2 2 λ 2 a 1 2 a 2 2 ( a 1 2 a 2 2 ) λ 2
E 2 w = E 0 q=1 2 m= 0 π 2 F mq (ζ)[ α q e (ζ) m mλ (1) ( h q )+ β q e (ζ) n mλ (1) ( h q ) γ q e (ζ) l mλ (1) ( h q )] e i h q z dζ
E t = E 0 m= 0 π 2 [ c m (ζ) m mλ (1) (h)+ d m (ζ) n mλ (1) (h) ]exp(ihz)dζ
H= 1 iω μ 0 ×E, [ m mλ e ihz m mλ e ihz ]= 1 k ×[ n mλ e ihz m mλ e ihz ]
E 1r i + E r r = E 1r w + E 2r w E 1ϕ i + E ϕ r = E 1ϕ w + E 2ϕ w H 1r i + H r r = H 1r w + H 2r w H 1ϕ i + H ϕ r = H 1ϕ w + H 2ϕ w } at z=0
E 1r w + E 2r w = E r t E 1ϕ w + E 2ϕ w = E ϕ t H 1r w + H 2r w = H r t H 1ϕ w + H 2ϕ w = H ϕ t } at z=d
I m,TE (ζ)+ a m (ζ)= E m1 (ζ)+ F m1 (ζ)
I m,TM (ζ) h k 0 b m (ζ) h k 0 = E m2 (ζ)[ β 2 e (ζ) h 2 k 2 i γ 2 e (ζ)] F m2 (ζ)[ β 2 e (ζ) h 2 k 2 i γ 2 e (ζ)]
I m,TE (ζ) h k 0 a m (ζ) h k 0 = h 1 k 0 E m1 (ζ) h 1 k 0 F m1 (ζ)
I m,TM (ζ)+ b m (ζ)= E m2 (ζ) k 2 k 0 β 2 e (ζ)+ F m2 (ζ) k 2 k 0 β 2 e (ζ)
E m1 (ζ) e i h 1 d + F m1 (ζ) e i h 1 d = c m (ζ) e ihd
E m2 (ζ)[ β 2 e (ζ) h 2 k 2 i γ 2 e (ζ)] e i h 2 d F m2 (ζ)[ β 2 e (ζ) h 2 k 2 i γ 2 e (ζ)] e i h 2 d = d m (ζ) h k 0 e ihd
E m1 (ζ) e i h 1 d F m1 (ζ) e i h 1 d = c m (ζ) h h 1 e ihd
E m2 (ζ) β 2 e (ζ) e i h 2 d + F m2 (ζ) β 2 e (ζ) e i h 2 d = d m (ζ) k 0 k 2 e ihd
| ( E i + E r ) / E 0 | 2 = ( | E r i + E r r | 2 + | E ϕ i + E ϕ r | 2 + | E z i + E z r | 2 ) / | E 0 | 2
| ( E 1 w + E 2 w ) / E 0 | 2 = ( | E 1r w + E 2r w | 2 + | E 1ϕ w + E 2ϕ w | 2 + | E 1z w + E 2z w | 2 ) / | E 0 | 2
| E t / E 0 | 2 = ( | E r t | 2 + | E φ t | 2 + | E z t | 2 ) / | E 0 | 2

Metrics