Abstract

The enhancement of color saturation and color gamut has been demonstrated, by taking advantage of a dual-band color filter based on a subwavelength rectangular metal-dielectric resonant grating, which exhibits an adjustable spectral response with respect to its relative transmittances at the two bands of green and red, thereby producing any color in between green and red, through the adjustment of incoming light polarization. Also, the prominent features of the spectral response of the filter, namely the bandwidth and resonant wavelength, can be readily adjusted by varying the dielectric layer thickness and the grating pitch, respectively. The dependence of chromaticity coordinates of the filter in the CIE (International Commission on Illumination) 1931 chromaticity diagram upon the parameters of the spectral response, including the center wavelength, spectral bandwidth and sideband level, has been rigorously examined, and their influence on the color gamut and the excitation purity, which is a colorimetric measure of saturation, has been analytically explored at the same time, in order to optimize the color performance of the filters. In particular, a device with wider spectral bandwidth was observed to efficiently extend the color gamut and enhance the color saturation, i.e. the excitation purity for a given sideband level. Two dual-band green-red filters, exhibiting different bandwidths of about 17 and 36 nm, were specifically designed and fabricated. As compared with the case with narrower bandwidth, the device with wider bandwidth was observed to provide both higher excitation purity leading to better color saturation and greater separation of the chromaticity coordinates for the filter output for different incident polarizations, which provides extended color gamut. The proposed device structure may permit the color tuning span to encompass all primary color bands, by adjusting the grating pitch.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yokogawa, S. P. Burgos, H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [CrossRef] [PubMed]
  2. Y. T. Yoon, S. S. Lee, B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nanostructures 10(1), 54–59 (2012).
    [CrossRef]
  3. T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(59), 59 (2010).
    [PubMed]
  4. M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
    [CrossRef] [PubMed]
  5. H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
    [CrossRef] [PubMed]
  6. T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [CrossRef] [PubMed]
  7. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  8. A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
    [CrossRef]
  9. Y. T. Yoon, C. H. Park, S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 22501 (2012).
    [CrossRef]
  10. M. J. Uddin, R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
    [CrossRef] [PubMed]
  11. C. H. Park, Y. T. Yoon, S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
    [CrossRef] [PubMed]
  12. B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
    [CrossRef]
  13. M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
    [CrossRef]
  14. H. Ichikawa, H. Kikuta, “Dynamic guided-mode resonant grating filter with quadratic electro-optic effect,” J. Opt. Soc. Am. A 22(7), 1311–1318 (2005).
    [CrossRef] [PubMed]
  15. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
    [CrossRef]
  16. R. Magnusson, M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
    [CrossRef] [PubMed]
  17. C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21(23), 28783–28793 (2013).
    [CrossRef]
  18. CIE, Colorimetry, 3rd ed., CIE 15:2004 (Commission Internationale de l’Eclairage, 2004).
  19. R. G. Kuehni, Color: An Introduction to Practice and Principles (John Wiley & Sons, 2013), Chap. 6.
  20. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (John Wiley & Sons, 2000), Chap. 3.
  21. D. Scott Dewald, “Color correction filter for displays,” U.S. Patent 6,231,190 (2001).
  22. L. A. Booth, “Method and apparatus for wide gamut multicolor display,” U.S. Patent 20,030,011,613, (2003).
  23. R. Magnusson, S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt. 34(35), 8106–8109 (1995).
    [CrossRef] [PubMed]
  24. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010), Chap. 6.
  25. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
    [CrossRef] [PubMed]
  26. S. T. Thurman, G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003).
    [CrossRef] [PubMed]
  27. D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structure,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [CrossRef]

2013

2012

C. H. Park, Y. T. Yoon, S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[CrossRef]

S. Yokogawa, S. P. Burgos, H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Y. T. Yoon, S. S. Lee, B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nanostructures 10(1), 54–59 (2012).
[CrossRef]

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Y. T. Yoon, C. H. Park, S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 22501 (2012).
[CrossRef]

2011

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

2010

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(59), 59 (2010).
[PubMed]

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[CrossRef]

2009

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

2007

2005

2003

1997

D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structure,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

1995

1993

Abedzadeh, N.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[CrossRef] [PubMed]

Amarloo, H.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[CrossRef] [PubMed]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Bardou, N.

Brunner, R.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[CrossRef]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Cheong, B. H.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Cho, E.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Cho, Y. S.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Choi, H. Y.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Collin, S.

Crozier, K. B.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Ellenbogen, T.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Friesem, A. A.

D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structure,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Ghenuche, P.

Gösele, U.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[CrossRef]

Guo, L. J.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(59), 59 (2010).
[PubMed]

Haïdar, R.

Helgert, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[CrossRef]

Heyroth, F.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[CrossRef]

Ichikawa, H.

Kaplan, A. F.

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

Khorasaninejad, M.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[CrossRef] [PubMed]

Kikuta, H.

Kim, E. S.

Kim, H. S.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Knez, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[CrossRef]

Ledbetter, A.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Lee, B. S.

Y. T. Yoon, S. S. Lee, B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nanostructures 10(1), 54–59 (2012).
[CrossRef]

Lee, J. Y.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Lee, S. S.

C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21(23), 28783–28793 (2013).
[CrossRef]

Y. T. Yoon, C. H. Park, S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 22501 (2012).
[CrossRef]

Y. T. Yoon, S. S. Lee, B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nanostructures 10(1), 54–59 (2012).
[CrossRef]

C. H. Park, Y. T. Yoon, S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Luo, X.

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(59), 59 (2010).
[PubMed]

Magnusson, R.

Mohsen Raeis-Zadeh, S.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[CrossRef] [PubMed]

Morris, G. M.

Pardo, F.

Park, C. H.

Park, C. S.

Park, H. J.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Pelouard, J.-L.

Prudnikov, O. H.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structure,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Safavi-Naeini, S.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[CrossRef] [PubMed]

Saini, S. S.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[CrossRef] [PubMed]

Sakat, E.

Seo, K.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

Sharon, A.

D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structure,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Shin, S. T.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Shokooh-Saremi, M.

Shrestha, V. R.

Szeghalmi, A.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[CrossRef]

Thurman, S. T.

Uddin, M. J.

M. J. Uddin, R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[CrossRef] [PubMed]

M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[CrossRef]

Vincent, G.

Wang, S. S.

Wu, Y. K.

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(59), 59 (2010).
[PubMed]

Xu, T.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(59), 59 (2010).
[PubMed]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Yoon, Y. T.

C. H. Park, Y. T. Yoon, V. R. Shrestha, C. S. Park, S. S. Lee, E. S. Kim, “Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating,” Opt. Express 21(23), 28783–28793 (2013).
[CrossRef]

Y. T. Yoon, S. S. Lee, B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nanostructures 10(1), 54–59 (2012).
[CrossRef]

Y. T. Yoon, C. H. Park, S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 22501 (2012).
[CrossRef]

C. H. Park, Y. T. Yoon, S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Yu, J.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

ACS Nano

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Express

Y. T. Yoon, C. H. Park, S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 22501 (2012).
[CrossRef]

Appl. Phys. Lett.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

A. F. Kaplan, T. Xu, L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

IEEE J. Quantum Electron.

D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structure,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

M. J. Uddin, R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett. 24(17), 1552–1554 (2012).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[CrossRef] [PubMed]

S. Yokogawa, S. P. Burgos, H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[CrossRef] [PubMed]

Nanotechnology

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[CrossRef] [PubMed]

Nat Commun

T. Xu, Y. K. Wu, X. Luo, L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun 1(59), 59 (2010).
[PubMed]

Opt. Express

Opt. Lett.

Photon. Nanostructures

Y. T. Yoon, S. S. Lee, B. S. Lee, “Nano-patterned visible wavelength filter integrated with an image sensor exploiting a 90-nm CMOS process,” Photon. Nanostructures 10(1), 54–59 (2012).
[CrossRef]

Other

CIE, Colorimetry, 3rd ed., CIE 15:2004 (Commission Internationale de l’Eclairage, 2004).

R. G. Kuehni, Color: An Introduction to Practice and Principles (John Wiley & Sons, 2013), Chap. 6.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (John Wiley & Sons, 2000), Chap. 3.

D. Scott Dewald, “Color correction filter for displays,” U.S. Patent 6,231,190 (2001).

L. A. Booth, “Method and apparatus for wide gamut multicolor display,” U.S. Patent 20,030,011,613, (2003).

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration of the proposed dual-band color filter, delivering a polarization-adjusted color output exhibiting two transmission peaks corresponding to green and red, each with a 3-dB bandwidth Δω, for two incident polarizations of Lx and Ly.

Fig. 2
Fig. 2

(a) Transfer characteristics resulting from FDTD based simulations for the dual-band color filter with Λx = 355 nm and Λy = 395 nm for different light polarizations (b) Corresponding chromaticity coordinates in the CIE 1931 chromaticity diagram showing a polarization-tailored output color, where the output color is observed to change from green to red when the polarization is varied from θ = 0° to θ = 90° in steps of 45°.

Fig. 3
Fig. 3

Variation in the CIE 1931 chromaticity coordinates for a Lorentzian filter response with various center wavelengths and bandwidths for the cases of (a) No sideband level (To = 0) (b) Non-zero sideband level (To = 0.05).

Fig. 4
Fig. 4

Effect of variation of Δω on (a) Excitation purity and (b) Dominant wavelength(λD) of the colors corresponding to the assumed Lorentzian filter response given by Eq. (3) for λo = 450, 550, and 650 nm for two cases pertaining to the presence and absence of the sideband level (To = 0 and To = 0.05).

Fig. 5
Fig. 5

(a) Calculated optical transmittance bandwidth (Δω) (b) Calculated relative center wavelength shift, with the cladding thickness (t) varying from 30 to 210 nm for the Lx and Ly polarizations.

Fig. 6
Fig. 6

Calculated transfer characteristics of different dual-band color filters: blue-green (BG), blue-red (BR) and green-red (GR) by using the respective grating periods of (a) Λxy = 285/355 nm, (b) Λxy = 285/395 nm, and (c) Λxy = 355/395 nm, for different light polarizations. The filter response for the cladding thickness of t = 100 nm is shown in dashed lines, while that for t = 30 nm is shown in solid lines.

Fig. 7
Fig. 7

CIE 1931 chromaticity coordinates for devices BG-1, BR-1 and GR-1 with a cladding thickness of 100 nm and Δω≈15 nm for different polarizations, as shown connected by a dashed line, and the coordinate for the devices BG-2, BR-2 and GR-2 with a cladding of 30-nm thickness and Δω≈32 nm as shown connected with a solid line. The direction of the arrows hints of the change in the output color, with θ varying from 0° to 90° and the dots for each filter represent the chromaticity coordinates for particular cases of θ=0°, 45° and 90°. The color gamut and color saturation are seen to be enhanced, when the cladding thickness changes from t=100 to 30 nm, which is in the direction of increasing the bandwidth of different transmittance bands.

Fig. 8
Fig. 8

SEM images of the fabricated dual-band color filter colors (a) Dev-I with a 100-nm thick cladding and (b) Dev-II with a cladding of 30-nm thickness.

Fig. 9
Fig. 9

Transmittance characteristics for orthogonal Lx and Ly polarizations for (a) Dev-I and (b) Dev-II. The simulated results are shown by dashed lines, while the measured results are shown by solid lines.

Fig. 10
Fig. 10

CIE 1931 chromaticity diagram showing the corresponding chromaticity coordinates for the demonstrated spectra of Dev-I with Δω = 17 nm for different polarizations, as shown connected by a dashed arrow, and that for Dev-II with Δω = 36 nm, as shown connected with a solid arrow. The direction of arrows shows the change in the output color, with the polarization angle θ varying from 0° to 90° in steps of 45°. The thick blue arrow indicates the improvement in the color gamut and color saturation, when the bandwidth increases from Δω = 17 to 36 nm.

Tables (4)

Tables Icon

Table 1 Theoretical Colorimetric Parameters of Blue-Green Filters with Different Cladding Thicknesses

Tables Icon

Table 2 Theoretical Colorimetric Parameters of Blue-Red Filters with Different Cladding Thicknesses

Tables Icon

Table 3 Theoretical Colorimetric Parameters of Green-Red Filters with Different Cladding Thicknesses

Tables Icon

Table 4 Measured Colorimetric Parameters of Green-Red Filters with Different Cladding Thicknesses

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

X = k λ T(λ)S(λ) x ¯ (λ)Δλ, Y = k λ T(λ)S(λ) y ¯ (λ)Δλ, and Z = k λ T(λ)S(λ) z ¯ (λ)Δλ, where k = 100/ λ S(λ) y ¯ (λ)Δλ
x = X X+Y+Z , y = Y X+Y+Z
f(λ,λ o ,Δω,T o ,T 1 )=T o +T 1 (Δω/2) 2 (λ-λ o ) 2 +(Δω/2) 2

Metrics