Abstract

Initial access to passive optical networks (PONs) requires upstream (US) synchronization of multiple optical network units (ONUs). We propose a low-complexity scheme for orthogonal frequency division multiple access (OFDMA) based PONs and demonstrate it experimentally. The scheme is based on interpolated Zadoff-Chu sequences, to synchronize the signal of each ONU arriving at the optical line terminal (OLT). Our experimental test bed consists of 4 colorless ONUs seeded by a single laser located at the OLT. Thermal expansion of a fiber is utilized to emulate a dynamic time drift in the demodulation-window positioning of OLT. The detected individual offsets at the OLT are fed back to the ONUs and are compensated at every data frame transmission. In this way, both inter carrier interference (ICI) and inter symbol interference (ISI) remain below acceptable levels.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
    [CrossRef]
  2. J. Chen, L. Wosinska, “Analysis of protection schemes in PON compatible with smooth migration from TDM-PON to hybrid WDM/TDMPON,” J. Opt. Networking 6(5), 514–526 (2007).
    [CrossRef]
  3. B. Kim and B.-W. Kim, “WDM-PON development and deployment as a present optical access solution,” in Optical Fiber Communication Conference and Exposition (OFC) and The National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, 2009), paper OThP5.
    [CrossRef]
  4. K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
    [CrossRef]
  5. W. Lim, P. Kourtessis, M. Milosavljevic, and J. M. Senior, “Optical and wireless convergence,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper AW2A.5.
  6. L. Sanguinetti, M. Morelli, “An initial ranging scheme for the IEEE 802.16 OFDMA uplink,” IEEE Trans. Wirel. Comm. 11(9), 3204–3215 (2012).
    [CrossRef]
  7. H. Mahmoud, H. Arslan, M. Ozdemir, “Initial ranging for WiMAX (802.16e) OFDMA,” in Proc.2006Military Commun. Conf., pp. 1–7.
    [CrossRef]
  8. M. Ruan, M. C. Reed, Z. Shi, “Successive multiuser detection and interference cancelation for contention based OFDMA ranging channel,” IEEE Trans. Wirel. Comm. 9(2), 481–487 (2010).
    [CrossRef]
  9. G. Ren, Y. Chang, H. Zhang, H. Zhang, “Synchronization method based on a new constant envelop preamble for OFDM systems,” IEEE Trans. Broadcast 51(1), 139–143 (2005).
    [CrossRef]
  10. H. Wang, L. Zhu, Y. Shi, T. Xing, Y. Wang, “A novel synchronization algorithm for OFDM systems with weighted CAZAC sequence,” J. Comput. Inf. Syst. 8(6), 2275–2283 (2012).
  11. S. Sesia, I. Toufik, and M. Baker, LTE – the UMTS Long Term Evolution. (John Wiley & Sons, 2009).
  12. R. L. Frank, S. A. Zadoff, R. Heimiller, “Phase shift pulse codes with good correlation properties,” IRE Trans. Inf. Theory 8(6), 381–382 (1962).
    [CrossRef]
  13. D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory 18(4), 531–532 (1972).
    [CrossRef]
  14. N. Cvijetic, D. Qian, J. Hu, T. Wang, “Orthogonal frequency division multiple access PON (OFDMAPON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
    [CrossRef]

2012 (4)

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

L. Sanguinetti, M. Morelli, “An initial ranging scheme for the IEEE 802.16 OFDMA uplink,” IEEE Trans. Wirel. Comm. 11(9), 3204–3215 (2012).
[CrossRef]

H. Wang, L. Zhu, Y. Shi, T. Xing, Y. Wang, “A novel synchronization algorithm for OFDM systems with weighted CAZAC sequence,” J. Comput. Inf. Syst. 8(6), 2275–2283 (2012).

E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
[CrossRef]

2010 (2)

N. Cvijetic, D. Qian, J. Hu, T. Wang, “Orthogonal frequency division multiple access PON (OFDMAPON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

M. Ruan, M. C. Reed, Z. Shi, “Successive multiuser detection and interference cancelation for contention based OFDMA ranging channel,” IEEE Trans. Wirel. Comm. 9(2), 481–487 (2010).
[CrossRef]

2007 (1)

J. Chen, L. Wosinska, “Analysis of protection schemes in PON compatible with smooth migration from TDM-PON to hybrid WDM/TDMPON,” J. Opt. Networking 6(5), 514–526 (2007).
[CrossRef]

2005 (1)

G. Ren, Y. Chang, H. Zhang, H. Zhang, “Synchronization method based on a new constant envelop preamble for OFDM systems,” IEEE Trans. Broadcast 51(1), 139–143 (2005).
[CrossRef]

1972 (1)

D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory 18(4), 531–532 (1972).
[CrossRef]

1962 (1)

R. L. Frank, S. A. Zadoff, R. Heimiller, “Phase shift pulse codes with good correlation properties,” IRE Trans. Inf. Theory 8(6), 381–382 (1962).
[CrossRef]

Arslan, H.

H. Mahmoud, H. Arslan, M. Ozdemir, “Initial ranging for WiMAX (802.16e) OFDMA,” in Proc.2006Military Commun. Conf., pp. 1–7.
[CrossRef]

Cano, I.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Chang, Y.

G. Ren, Y. Chang, H. Zhang, H. Zhang, “Synchronization method based on a new constant envelop preamble for OFDM systems,” IEEE Trans. Broadcast 51(1), 139–143 (2005).
[CrossRef]

Chen, J.

J. Chen, L. Wosinska, “Analysis of protection schemes in PON compatible with smooth migration from TDM-PON to hybrid WDM/TDMPON,” J. Opt. Networking 6(5), 514–526 (2007).
[CrossRef]

Chu, D. C.

D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory 18(4), 531–532 (1972).
[CrossRef]

Cvijetic, N.

N. Cvijetic, D. Qian, J. Hu, T. Wang, “Orthogonal frequency division multiple access PON (OFDMAPON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

Frank, R. L.

R. L. Frank, S. A. Zadoff, R. Heimiller, “Phase shift pulse codes with good correlation properties,” IRE Trans. Inf. Theory 8(6), 381–382 (1962).
[CrossRef]

Heimiller, R.

R. L. Frank, S. A. Zadoff, R. Heimiller, “Phase shift pulse codes with good correlation properties,” IRE Trans. Inf. Theory 8(6), 381–382 (1962).
[CrossRef]

Hu, J.

N. Cvijetic, D. Qian, J. Hu, T. Wang, “Orthogonal frequency division multiple access PON (OFDMAPON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

Kanonakis, K.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Kourtessis, P.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Krimmel, H. G.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Lange, C.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Leuthold, J.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Mahmoud, H.

H. Mahmoud, H. Arslan, M. Ozdemir, “Initial ranging for WiMAX (802.16e) OFDMA,” in Proc.2006Military Commun. Conf., pp. 1–7.
[CrossRef]

Milosavljevic, M.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Morelli, M.

L. Sanguinetti, M. Morelli, “An initial ranging scheme for the IEEE 802.16 OFDMA uplink,” IEEE Trans. Wirel. Comm. 11(9), 3204–3215 (2012).
[CrossRef]

Ozdemir, M.

H. Mahmoud, H. Arslan, M. Ozdemir, “Initial ranging for WiMAX (802.16e) OFDMA,” in Proc.2006Military Commun. Conf., pp. 1–7.
[CrossRef]

Prat, J.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Qian, D.

N. Cvijetic, D. Qian, J. Hu, T. Wang, “Orthogonal frequency division multiple access PON (OFDMAPON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

Reed, M. C.

M. Ruan, M. C. Reed, Z. Shi, “Successive multiuser detection and interference cancelation for contention based OFDMA ranging channel,” IEEE Trans. Wirel. Comm. 9(2), 481–487 (2010).
[CrossRef]

Ren, G.

G. Ren, Y. Chang, H. Zhang, H. Zhang, “Synchronization method based on a new constant envelop preamble for OFDM systems,” IEEE Trans. Broadcast 51(1), 139–143 (2005).
[CrossRef]

Romero, S.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Ruan, M.

M. Ruan, M. C. Reed, Z. Shi, “Successive multiuser detection and interference cancelation for contention based OFDMA ranging channel,” IEEE Trans. Wirel. Comm. 9(2), 481–487 (2010).
[CrossRef]

Sanguinetti, L.

L. Sanguinetti, M. Morelli, “An initial ranging scheme for the IEEE 802.16 OFDMA uplink,” IEEE Trans. Wirel. Comm. 11(9), 3204–3215 (2012).
[CrossRef]

Schaich, F.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Shi, Y.

H. Wang, L. Zhu, Y. Shi, T. Xing, Y. Wang, “A novel synchronization algorithm for OFDM systems with weighted CAZAC sequence,” J. Comput. Inf. Syst. 8(6), 2275–2283 (2012).

Shi, Z.

M. Ruan, M. C. Reed, Z. Shi, “Successive multiuser detection and interference cancelation for contention based OFDMA ranging channel,” IEEE Trans. Wirel. Comm. 9(2), 481–487 (2010).
[CrossRef]

Tomkos, I.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Wang, H.

H. Wang, L. Zhu, Y. Shi, T. Xing, Y. Wang, “A novel synchronization algorithm for OFDM systems with weighted CAZAC sequence,” J. Comput. Inf. Syst. 8(6), 2275–2283 (2012).

Wang, T.

N. Cvijetic, D. Qian, J. Hu, T. Wang, “Orthogonal frequency division multiple access PON (OFDMAPON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

Wang, Y.

H. Wang, L. Zhu, Y. Shi, T. Xing, Y. Wang, “A novel synchronization algorithm for OFDM systems with weighted CAZAC sequence,” J. Comput. Inf. Syst. 8(6), 2275–2283 (2012).

Weis, E.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Winter, M.

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

Wong, E.

Wosinska, L.

J. Chen, L. Wosinska, “Analysis of protection schemes in PON compatible with smooth migration from TDM-PON to hybrid WDM/TDMPON,” J. Opt. Networking 6(5), 514–526 (2007).
[CrossRef]

Xing, T.

H. Wang, L. Zhu, Y. Shi, T. Xing, Y. Wang, “A novel synchronization algorithm for OFDM systems with weighted CAZAC sequence,” J. Comput. Inf. Syst. 8(6), 2275–2283 (2012).

Zadoff, S. A.

R. L. Frank, S. A. Zadoff, R. Heimiller, “Phase shift pulse codes with good correlation properties,” IRE Trans. Inf. Theory 8(6), 381–382 (1962).
[CrossRef]

Zhang, H.

G. Ren, Y. Chang, H. Zhang, H. Zhang, “Synchronization method based on a new constant envelop preamble for OFDM systems,” IEEE Trans. Broadcast 51(1), 139–143 (2005).
[CrossRef]

G. Ren, Y. Chang, H. Zhang, H. Zhang, “Synchronization method based on a new constant envelop preamble for OFDM systems,” IEEE Trans. Broadcast 51(1), 139–143 (2005).
[CrossRef]

Zhu, L.

H. Wang, L. Zhu, Y. Shi, T. Xing, Y. Wang, “A novel synchronization algorithm for OFDM systems with weighted CAZAC sequence,” J. Comput. Inf. Syst. 8(6), 2275–2283 (2012).

IEEE Commun. Mag. (1)

K. Kanonakis, I. Tomkos, H. G. Krimmel, F. Schaich, C. Lange, E. Weis, J. Leuthold, M. Winter, S. Romero, P. Kourtessis, M. Milosavljevic, I. Cano, J. Prat, “An OFDMA-Based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence,” IEEE Commun. Mag. 50(8), 71–78 (2012).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

N. Cvijetic, D. Qian, J. Hu, T. Wang, “Orthogonal frequency division multiple access PON (OFDMAPON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

IEEE Trans. Broadcast (1)

G. Ren, Y. Chang, H. Zhang, H. Zhang, “Synchronization method based on a new constant envelop preamble for OFDM systems,” IEEE Trans. Broadcast 51(1), 139–143 (2005).
[CrossRef]

IEEE Trans. Inf. Theory (1)

D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory 18(4), 531–532 (1972).
[CrossRef]

IEEE Trans. Wirel. Comm. (2)

M. Ruan, M. C. Reed, Z. Shi, “Successive multiuser detection and interference cancelation for contention based OFDMA ranging channel,” IEEE Trans. Wirel. Comm. 9(2), 481–487 (2010).
[CrossRef]

L. Sanguinetti, M. Morelli, “An initial ranging scheme for the IEEE 802.16 OFDMA uplink,” IEEE Trans. Wirel. Comm. 11(9), 3204–3215 (2012).
[CrossRef]

IRE Trans. Inf. Theory (1)

R. L. Frank, S. A. Zadoff, R. Heimiller, “Phase shift pulse codes with good correlation properties,” IRE Trans. Inf. Theory 8(6), 381–382 (1962).
[CrossRef]

J. Comput. Inf. Syst. (1)

H. Wang, L. Zhu, Y. Shi, T. Xing, Y. Wang, “A novel synchronization algorithm for OFDM systems with weighted CAZAC sequence,” J. Comput. Inf. Syst. 8(6), 2275–2283 (2012).

J. Lightwave Technol. (1)

J. Opt. Networking (1)

J. Chen, L. Wosinska, “Analysis of protection schemes in PON compatible with smooth migration from TDM-PON to hybrid WDM/TDMPON,” J. Opt. Networking 6(5), 514–526 (2007).
[CrossRef]

Other (4)

B. Kim and B.-W. Kim, “WDM-PON development and deployment as a present optical access solution,” in Optical Fiber Communication Conference and Exposition (OFC) and The National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, 2009), paper OThP5.
[CrossRef]

W. Lim, P. Kourtessis, M. Milosavljevic, and J. M. Senior, “Optical and wireless convergence,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper AW2A.5.

S. Sesia, I. Toufik, and M. Baker, LTE – the UMTS Long Term Evolution. (John Wiley & Sons, 2009).

H. Mahmoud, H. Arslan, M. Ozdemir, “Initial ranging for WiMAX (802.16e) OFDMA,” in Proc.2006Military Commun. Conf., pp. 1–7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Upstream transmission model in OFDMA-PON. Given example shows 2 synchronized ONUs carrying data and 2 ranging ONUs carrying no data.

Fig. 2
Fig. 2

Experimental setup of implemented upstream OFDMA-PON system.

Fig. 3
Fig. 3

Experimental results: Timing offsets (ΔT) for ONU#2-4 relative to #1 (a), EVMs of ONUs (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Z C r ( m )=| e j2πr N ( m 2 2 +m ) N:even e j2πr N ( m( m+1 ) 2 +m ) N:odd
T U =[ ZCP N U ZC ZCP N U ZC ]
Pr e u = e j2π f R t interpolate( T u ,F)

Metrics