Abstract

We report two-photon interference with continuous-wave multi-mode coherent light. We show that the two-photon interference, in terms of the detection time difference, reveals two-photon beating fringes with the visibility V = 0.5. While scanning the optical delay of the interferometer, Hong-Ou-Mandel dips or peaks are measured depending on the chosen detection time difference. The HOM dips/peaks are repeated when the optical delay and the first-order coherence revival period of the multi-mode coherent light are the same. These results help to understand the nature of two-photon interference and also can be useful for quantum information science.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon quantum interference in the 1.5 μm telecommunication band

Seok-Beom Cho and Tae-Gon Noh
Opt. Express 15(12) 7591-7595 (2007)

High visibility Hong-Ou-Mandel interference via a time-resolved coincidence measurement

Yoshiaki Tsujimoto, Yukihiro Sugiura, Motoki Tanaka, Rikizo Ikuta, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto, Masato Koashi, Masahide Sasaki, and Nobuyuki Imoto
Opt. Express 25(11) 12069-12080 (2017)

Spectral characterization of weak coherent state sources based on two-photon interference

Thiago Ferreira da Silva, Gustavo C. do Amaral, Douglas Vitoreti, Guilherme P. Temporão, and Jean Pierre von der Weid
J. Opt. Soc. Am. B 32(4) 545-549 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Young, Lectures on Natural Philosophy, Vol. I, p. 464 (Johnson, London, 1807).
  2. E. Hecht, Optics (Addision-Wesely, San Francisco, 2002).
  3. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999).
    [Crossref]
  4. C.K. Hong, Z.Y. Ou, and L. Mandel, “Measurement of sub picosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  5. J.G. Rarity, P.R. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B: Quantum Semiclass. Opt. 7, S171–S175 (2005).
    [Crossref]
  6. A.K. Jha, Coherence property of the entangled two-photon field produced by parametric down-conversion, Ph.D. thesis, University of Rochester, NY, 2009.
  7. Z.Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
    [Crossref] [PubMed]
  8. T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-photon quantum interference,” Appl. Phys. B 77, 797–802 (2003).
    [Crossref]
  9. T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
    [Crossref] [PubMed]
  10. T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” Adv. Atom. Atom. Mol. Opt. Phys. 53, 253–289 (2006).
    [Crossref]
  11. X.Y. Zou, L.J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67, 318–321 (1991).
    [Crossref] [PubMed]
  12. O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled |N, 0〉+ |0, N〉 state,” Phys. Rev. A 81, 063801 (2010).
    [Crossref]
  13. H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011).
    [Crossref] [PubMed]
  14. Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012).
    [Crossref]
  15. E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  16. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  17. K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
    [Crossref]
  18. J. Cheng and S.-S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [Crossref] [PubMed]
  19. J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
    [Crossref]
  20. Y.H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
    [Crossref]
  21. Y.-S. Kim, O. Slattery, P.S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
    [Crossref]
  22. L. de Broglie and J.A.E. Silva, “Interpretation of a Recent Experiment on Interference of Photon Beams,” Phys. Rev. 172, 1284–1285 (1968).
    [Crossref]
  23. S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
    [Crossref]
  24. O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser,” Opt. Express 17, 13059 (2009).
    [Crossref] [PubMed]
  25. O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Opt. Express 21, 25492 (2013).
    [Crossref] [PubMed]

2013 (2)

2012 (1)

Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012).
[Crossref]

2011 (1)

H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011).
[Crossref] [PubMed]

2010 (1)

O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled |N, 0〉+ |0, N〉 state,” Phys. Rev. A 81, 063801 (2010).
[Crossref]

2009 (1)

2007 (2)

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

2006 (1)

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” Adv. Atom. Atom. Mol. Opt. Phys. 53, 253–289 (2006).
[Crossref]

2005 (3)

J.G. Rarity, P.R. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B: Quantum Semiclass. Opt. 7, S171–S175 (2005).
[Crossref]

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[Crossref]

Y.H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[Crossref]

2004 (3)

K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
[Crossref]

J. Cheng and S.-S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[Crossref] [PubMed]

2003 (1)

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-photon quantum interference,” Appl. Phys. B 77, 797–802 (2003).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

1999 (1)

L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999).
[Crossref]

1991 (1)

X.Y. Zou, L.J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67, 318–321 (1991).
[Crossref] [PubMed]

1988 (1)

Z.Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
[Crossref] [PubMed]

1987 (1)

C.K. Hong, Z.Y. Ou, and L. Mandel, “Measurement of sub picosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

1968 (1)

L. de Broglie and J.A.E. Silva, “Interpretation of a Recent Experiment on Interference of Photon Beams,” Phys. Rev. 172, 1284–1285 (1968).
[Crossref]

Bae, J.

H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011).
[Crossref] [PubMed]

Baek, S.-Y.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

Cao, D.-Z.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[Crossref]

K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
[Crossref]

Chen, X.-H.

Y.H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[Crossref]

Cheng, J.

J. Cheng and S.-S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

de Broglie, L.

L. de Broglie and J.A.E. Silva, “Interpretation of a Recent Experiment on Interference of Photon Beams,” Phys. Rev. 172, 1284–1285 (1968).
[Crossref]

Dowiling, J.P.

P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Han, S.-S.

J. Cheng and S.-S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

Hecht, E.

E. Hecht, Optics (Addision-Wesely, San Francisco, 2002).

Hennrich, M.

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[Crossref] [PubMed]

Hong, C.K.

C.K. Hong, Z.Y. Ou, and L. Mandel, “Measurement of sub picosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Huang, F.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[Crossref]

Jha, A.K.

A.K. Jha, Coherence property of the entangled two-photon field produced by parametric down-conversion, Ph.D. thesis, University of Rochester, NY, 2009.

Kim, Y.-H.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Opt. Express 21, 25492 (2013).
[Crossref] [PubMed]

Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012).
[Crossref]

H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011).
[Crossref] [PubMed]

O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled |N, 0〉+ |0, N〉 state,” Phys. Rev. A 81, 063801 (2010).
[Crossref]

O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser,” Opt. Express 17, 13059 (2009).
[Crossref] [PubMed]

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

Kim, Y.-S.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Opt. Express 21, 25492 (2013).
[Crossref] [PubMed]

Y.-S. Kim, O. Slattery, P.S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012).
[Crossref]

H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kok, P.

P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Kuhn, A.

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” Adv. Atom. Atom. Mol. Opt. Phys. 53, 253–289 (2006).
[Crossref]

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[Crossref] [PubMed]

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-photon quantum interference,” Appl. Phys. B 77, 797–802 (2003).
[Crossref]

Kuo, P.S.

Y.-S. Kim, O. Slattery, P.S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

Kwon, O.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Opt. Express 21, 25492 (2013).
[Crossref] [PubMed]

Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012).
[Crossref]

O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled |N, 0〉+ |0, N〉 state,” Phys. Rev. A 81, 063801 (2010).
[Crossref]

O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser,” Opt. Express 17, 13059 (2009).
[Crossref] [PubMed]

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lee, J.-C.

Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012).
[Crossref]

Legero, T.

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” Adv. Atom. Atom. Mol. Opt. Phys. 53, 253–289 (2006).
[Crossref]

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[Crossref] [PubMed]

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-photon quantum interference,” Appl. Phys. B 77, 797–802 (2003).
[Crossref]

Li, H.-G.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[Crossref]

Lim, H.-T.

H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011).
[Crossref] [PubMed]

Loudon, R.

J.G. Rarity, P.R. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B: Quantum Semiclass. Opt. 7, S171–S175 (2005).
[Crossref]

Mandel, L.

L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999).
[Crossref]

X.Y. Zou, L.J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67, 318–321 (1991).
[Crossref] [PubMed]

Z.Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
[Crossref] [PubMed]

C.K. Hong, Z.Y. Ou, and L. Mandel, “Measurement of sub picosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Milburn, G.J.

P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Munro, W.J.

P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Nemoto, K.

P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Ou, Z.Y.

Z.Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
[Crossref] [PubMed]

C.K. Hong, Z.Y. Ou, and L. Mandel, “Measurement of sub picosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Park, K.-K.

Ra, Y.-S.

O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Opt. Express 21, 25492 (2013).
[Crossref] [PubMed]

H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011).
[Crossref] [PubMed]

O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled |N, 0〉+ |0, N〉 state,” Phys. Rev. A 81, 063801 (2010).
[Crossref]

O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser,” Opt. Express 17, 13059 (2009).
[Crossref] [PubMed]

Ralph, T.C.

P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Rarity, J.G.

J.G. Rarity, P.R. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B: Quantum Semiclass. Opt. 7, S171–S175 (2005).
[Crossref]

Rempe, G.

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” Adv. Atom. Atom. Mol. Opt. Phys. 53, 253–289 (2006).
[Crossref]

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[Crossref] [PubMed]

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-photon quantum interference,” Appl. Phys. B 77, 797–802 (2003).
[Crossref]

Silva, J.A.E.

L. de Broglie and J.A.E. Silva, “Interpretation of a Recent Experiment on Interference of Photon Beams,” Phys. Rev. 172, 1284–1285 (1968).
[Crossref]

Slattery, O.

Y.-S. Kim, O. Slattery, P.S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

Sun, X.-J.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[Crossref]

Tang, X.

Y.-S. Kim, O. Slattery, P.S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

Tapster, P.R.

J.G. Rarity, P.R. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B: Quantum Semiclass. Opt. 7, S171–S175 (2005).
[Crossref]

Wang, K.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[Crossref]

K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
[Crossref]

Wang, L.J.

X.Y. Zou, L.J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67, 318–321 (1991).
[Crossref] [PubMed]

Wilk, T.

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” Adv. Atom. Atom. Mol. Opt. Phys. 53, 253–289 (2006).
[Crossref]

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[Crossref] [PubMed]

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-photon quantum interference,” Appl. Phys. B 77, 797–802 (2003).
[Crossref]

Wu, L.-A.

Y.H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[Crossref]

Xiong, J.

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[Crossref]

Young, T.

T. Young, Lectures on Natural Philosophy, Vol. I, p. 464 (Johnson, London, 1807).

Zhai, Y.H.

Y.H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[Crossref]

Zhang, D.

Y.H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[Crossref]

Zou, X.Y.

X.Y. Zou, L.J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67, 318–321 (1991).
[Crossref] [PubMed]

Adv. Atom. Atom. Mol. Opt. Phys. (1)

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” Adv. Atom. Atom. Mol. Opt. Phys. 53, 253–289 (2006).
[Crossref]

Appl. Phys. B (1)

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Time-resolved two-photon quantum interference,” Appl. Phys. B 77, 797–802 (2003).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

J.G. Rarity, P.R. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B: Quantum Semiclass. Opt. 7, S171–S175 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Nature Phys. (1)

Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

L. de Broglie and J.A.E. Silva, “Interpretation of a Recent Experiment on Interference of Photon Beams,” Phys. Rev. 172, 1284–1285 (1968).
[Crossref]

Phys. Rev. A (4)

K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004).
[Crossref]

Y.H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[Crossref]

Y.-S. Kim, O. Slattery, P.S. Kuo, and X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013).
[Crossref]

O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled |N, 0〉+ |0, N〉 state,” Phys. Rev. A 81, 063801 (2010).
[Crossref]

Phys. Rev. Lett. (7)

H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011).
[Crossref] [PubMed]

X.Y. Zou, L.J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67, 318–321 (1991).
[Crossref] [PubMed]

Z.Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
[Crossref] [PubMed]

T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
[Crossref] [PubMed]

C.K. Hong, Z.Y. Ou, and L. Mandel, “Measurement of sub picosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

J. Cheng and S.-S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, and K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005).
[Crossref]

Rev. Mod. Phys. (2)

L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999).
[Crossref]

P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, and G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Other (3)

T. Young, Lectures on Natural Philosophy, Vol. I, p. 464 (Johnson, London, 1807).

E. Hecht, Optics (Addision-Wesely, San Francisco, 2002).

A.K. Jha, Coherence property of the entangled two-photon field produced by parametric down-conversion, Ph.D. thesis, University of Rochester, NY, 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic of two-photon interference with CW coherent light. (b) Experimental setup of two-photon interference with CW coherent light with a single laser. The degree of first-order coherence |γt)| can be maintained to be nonzero while the phases between two inputs are randomized by two independent acousto-optic modulators, AOM1 and AOM2.
Fig. 2
Fig. 2 Simulations of two-photon interference. Gaussian distributions of |γt)| and |Γ(ΔT)| with the full width at half maximums of 0.67 ps and 1.18 μs, respectively, are assumed. The periodic first-order coherence function for a diode laser with period of Tp = 10.57 ps is also assumed. (a) For Δω = 0, HOM dips with visibility of 0.5 can be shown when ΔT = 0 and Δt = nLp, where n = 0, ±1, ±2, ···. (b) For Δω = 2π × 3 MHz, the coincidence shows the sinusoidal two-photon beating with respect to ΔT with envelopes defined by the two coherence functions.
Fig. 3
Fig. 3 (a) The spectrum of CW multi-mode diode laser. (b) Single-photon interference registered at D1 with synchronized AOMs.
Fig. 4
Fig. 4 Two-photon coincidences as a function of the detection-time difference ΔT. The optical path length difference Δt = 0 during the measurement. (a) Δω = 0, (b) Δω = 2π × 3 MHz. (a) and (b) are measured at the various FM noises for RF signal of AOM1 that introduces limited |Γ(ΔT)|. Error bars denote the experimental standard deviations.
Fig. 5
Fig. 5 Two-photon coincidences as a function of the optical path difference, Δt for various detection-time differences (a) ΔT = 0, (b) ΔT = 0.16 μs, (c) ΔT = 0.32 μs, and (d) ΔT = 1.49 μs. HOM dips/peaks are measured depending on the conditions. The dips/peaks are repeated every Tp = 10.60 ± 0.10 ps which is the same for the single-photon interference repeating period.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E j ( t ) = | E 0 | e i ( ω j t + ϕ j ) ,
E 3 ( t ) = 1 2 [ E 1 ( t t 1 ) + i E 2 ( t t 2 ) ] , E 4 ( t ) = 1 2 [ E 2 ( t t 2 ) + i E 1 ( t t 1 ) ] ,
I 3 ( t ) = E 3 * ( t ) E 3 ( t ) = | E 0 | 2 { 1 + | γ ( Δ t ) | sin [ ω 2 t 2 ω 1 t 1 Δ ω t Δ ϕ ] } , I 4 ( t ) = E 4 * ( t ) E 4 ( t ) = | E 0 | 2 { 1 | γ ( Δ t ) | sin [ ω 2 t 2 ω 1 t 1 Δ ω t Δ ϕ ] } ,
I 3 ( t ) = | E 0 | 2 { 1 + | γ ( Δ t ) | sin ( ω 0 Δ t Δ ϕ ) } , I 4 ( t ) = | E 0 | 2 { 1 | γ ( Δ t ) sin [ ω 0 Δ t Δ ϕ ] | } .
I 3 ( T 1 ) I 4 ( T 2 ) = | E 0 | 4 { 1 + | γ ( Δ t ) | sin [ 𝒜 Δ ω T 1 ] | γ ( Δ t ) | sin [ 𝒜 Δ ω T 2 ] | γ ( Δ t ) | 2 sin [ 𝒜 Δ ω T 1 ] sin [ 𝒜 Δ ω T 2 ] } .
I 3 ( T 1 ) I 4 ( T 2 ) ~ 1 1 2 | γ ( Δ t ) | 2 cos [ Δ ω Δ T ] .
I 3 I 4 ( Δ t , Δ T ) ~ 1 1 2 | γ ( Δ t ) | 2 | Γ ( Δ T ) | cos [ Δ ω Δ T ] .

Metrics