Abstract

An asymmetrical Fabry-Perot interferometric (AFPI) force sensor is fabricated based on a narrowband reflection of low-reflectivity fiber Bragg grating (LR-FBG) and a broadband Fresnel reflection of the cleaved fiber end. The AFPI sensor includes a section of microfiber made by tapering and it achieves a force sensitivity of 0.221pm/μN with a tapered microfiber of 40mm length and 6.1μm waist diameter. Compared with similar AFPI structure in 125μm-diameter single mode fiber, the force sensitivity of the microfiber AFPI structure is greatly enhanced due to its smaller diameter and can be optimized for different force scales by controlling the diameter. The fabrication process of the AFPI sensor is simple and cost-effective. The AFPI sensor has better multiplexing capacity than conventional extrinsic fiber-optic Fabry-Perot sensors, while it also release the requirement on the wavelength matching of the FBG-pair-based FPI.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451(7175), 172–175 (2008).
    [CrossRef] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  3. D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
    [CrossRef]
  4. Y. Gong, A. Y. Ye, Y. Wu, Y. J. Rao, Y. Yao, S. Xiao, “Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment,” Opt. Express 21(13), 16181–16190 (2013).
    [CrossRef] [PubMed]
  5. R. Kumar, H. Kumar, A. Kumar, V. Kumar, “Long term uncertainty investigations of 1 MN force calibration machine at NPL, India (NPLI),” Meas. Sci. Rev. 12(4), 149–152 (2012).
    [CrossRef]
  6. T. Guo, Q. Zhao, H. Zhang, L. Xue, G. Li, B. Dong, B. Liu, W. Zhang, G. Kai, X. Dong, “Temperature-insensitive fiber Bragg grating force sensor via a bandwidth modulation and optical-power detection technique,” J. Lightwave Technol. 24(10), 3797–3802 (2006).
    [CrossRef]
  7. Y. Q. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 17(2), 450–452 (2005).
    [CrossRef]
  8. B. Dong, D. P. Zhou, L. Wei, W. K. Liu, J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16(23), 19291–19296 (2008).
    [CrossRef] [PubMed]
  9. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  10. L. Zhang, J. Y. Lou, L. M. Tong, “Micro/nanofiber optical sensors,” Photonic Sens. 1(1), 31–42 (2011).
    [CrossRef]
  11. F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [CrossRef] [PubMed]
  12. Y. Wu, Y. J. Rao, Y. H. Chen, Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17(20), 18142–18147 (2009).
    [CrossRef] [PubMed]
  13. K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photonics Technol. Lett. 24(8), 700–702 (2012).
    [CrossRef]
  14. W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
    [CrossRef]
  15. T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
    [CrossRef]
  16. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. M. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
    [CrossRef] [PubMed]
  17. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [CrossRef] [PubMed]
  18. S. Gao, L. Jin, Y. Ran, L. P. Sun, J. Li, B. O. Guan, “Temperature compensated microfiber Bragg gratings,” Opt. Express 20(16), 18281–18286 (2012).
    [CrossRef] [PubMed]
  19. X. Fang, C. R. Liao, D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [CrossRef] [PubMed]
  20. J. Li, X. Shen, L. P. Sun, B. O. Guan, “Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure,” Opt. Express 21(10), 12111–12121 (2013).
    [CrossRef] [PubMed]
  21. J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett. 37(14), 2925–2927 (2012).
    [CrossRef] [PubMed]
  22. Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, M. Rothhardt, “Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers,” Appl. Opt. 48(11), 1963–1968 (2009).
    [CrossRef] [PubMed]
  23. Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
    [CrossRef]
  24. Y. Fujii, “Method of generating and measuring static small force using down-slope component of gravity,” Rev. Sci. Instrum. 78(6), 066104 (2007).
    [CrossRef] [PubMed]
  25. K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys. 143(1), 136–142 (2008).
  26. O. Frazão, R. M. Silva, J. Kobelke, K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
    [CrossRef] [PubMed]
  27. Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).
  28. Y. Yu, H. Tam, W. Chung, M. S. Demokan, “Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature,” Opt. Lett. 25(16), 1141–1143 (2000).
    [CrossRef] [PubMed]
  29. J. Villatoro, V. P. Minkovich, D. Monzón-Hernández, “Temperature-independent strain sensor made from tapered holey optical fiber,” Opt. Lett. 31(3), 305–307 (2006).
    [CrossRef] [PubMed]
  30. X. Y. Dong, Y. Liu, Z. Liu, X. Y. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun. 192(3–6), 213–217 (2001).
    [CrossRef]
  31. T. Guo, A. Ivanov, Ch. Chen, J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
    [CrossRef] [PubMed]
  32. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  33. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29(15), 1736–1738 (2004).
    [CrossRef] [PubMed]
  34. T. Wei, Y. Han, Y. Li, H. L. Tsai, H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  35. X. Wan, H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002).
    [CrossRef] [PubMed]
  36. W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  37. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [CrossRef] [PubMed]

2013 (2)

2012 (5)

J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett. 37(14), 2925–2927 (2012).
[CrossRef] [PubMed]

S. Gao, L. Jin, Y. Ran, L. P. Sun, J. Li, B. O. Guan, “Temperature compensated microfiber Bragg gratings,” Opt. Express 20(16), 18281–18286 (2012).
[CrossRef] [PubMed]

R. Kumar, H. Kumar, A. Kumar, V. Kumar, “Long term uncertainty investigations of 1 MN force calibration machine at NPL, India (NPLI),” Meas. Sci. Rev. 12(4), 149–152 (2012).
[CrossRef]

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photonics Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

2011 (5)

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. M. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[CrossRef] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

L. Zhang, J. Y. Lou, L. M. Tong, “Micro/nanofiber optical sensors,” Photonic Sens. 1(1), 31–42 (2011).
[CrossRef]

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

2010 (3)

2009 (3)

2008 (6)

K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys. 143(1), 136–142 (2008).

T. Guo, A. Ivanov, Ch. Chen, J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
[CrossRef] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451(7175), 172–175 (2008).
[CrossRef] [PubMed]

B. Dong, D. P. Zhou, L. Wei, W. K. Liu, J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16(23), 19291–19296 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. Fujii, “Method of generating and measuring static small force using down-slope component of gravity,” Rev. Sci. Instrum. 78(6), 066104 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Y. Q. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 17(2), 450–452 (2005).
[CrossRef]

2004 (1)

2003 (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

X. Y. Dong, Y. Liu, Z. Liu, X. Y. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun. 192(3–6), 213–217 (2001).
[CrossRef]

2000 (1)

Albert, J.

Andrés, M. V.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Barmenkov, Y. O.

Bartelt, H.

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, M. Rothhardt, “Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers,” Appl. Opt. 48(11), 1963–1968 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Bechinger, C.

C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451(7175), 172–175 (2008).
[CrossRef] [PubMed]

Becker, M.

Bennion, I.

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

Bergmann, J.

Bruckner, S.

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

Brueckner, S.

Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, M. Rothhardt, “Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers,” Appl. Opt. 48(11), 1963–1968 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Chen, Ch.

Chen, Y.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Chen, Y. H.

Chiang, K. S.

Y. Q. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 17(2), 450–452 (2005).
[CrossRef]

Chu, P. L.

Y. Q. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 17(2), 450–452 (2005).
[CrossRef]

Chung, K. M.

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photonics Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

Chung, W.

Cruz, J. L.

Demokan, M. S.

Dietrich, S.

C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451(7175), 172–175 (2008).
[CrossRef] [PubMed]

Dong, B.

Dong, X.

Dong, X. Y.

X. Y. Dong, Y. Liu, Z. Liu, X. Y. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun. 192(3–6), 213–217 (2001).
[CrossRef]

X. Y. Dong, Y. Liu, Z. Liu, X. Y. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun. 192(3–6), 213–217 (2001).
[CrossRef]

Ecke, W.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Fang, X.

Frazão, O.

Fujii, Y.

Y. Fujii, “Method of generating and measuring static small force using down-slope component of gravity,” Rev. Sci. Instrum. 78(6), 066104 (2007).
[CrossRef] [PubMed]

Gambassi, A.

C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451(7175), 172–175 (2008).
[CrossRef] [PubMed]

Gao, S.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gong, Y.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Gu, F. X.

F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Guan, B. O.

Guo, T.

Han, M.

Han, Y.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Helden, L.

C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451(7175), 172–175 (2008).
[CrossRef] [PubMed]

Hertlein, C.

C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451(7175), 172–175 (2008).
[CrossRef] [PubMed]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Ivanov, A.

Jin, L.

Jomori, T.

K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys. 143(1), 136–142 (2008).

Kai, G.

Kautz, M.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Kobelke, J.

Kou, J. L.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Kumar, A.

R. Kumar, H. Kumar, A. Kumar, V. Kumar, “Long term uncertainty investigations of 1 MN force calibration machine at NPL, India (NPLI),” Meas. Sci. Rev. 12(4), 149–152 (2012).
[CrossRef]

Kumar, H.

R. Kumar, H. Kumar, A. Kumar, V. Kumar, “Long term uncertainty investigations of 1 MN force calibration machine at NPL, India (NPLI),” Meas. Sci. Rev. 12(4), 149–152 (2012).
[CrossRef]

Kumar, R.

R. Kumar, H. Kumar, A. Kumar, V. Kumar, “Long term uncertainty investigations of 1 MN force calibration machine at NPL, India (NPLI),” Meas. Sci. Rev. 12(4), 149–152 (2012).
[CrossRef]

Kumar, V.

R. Kumar, H. Kumar, A. Kumar, V. Kumar, “Long term uncertainty investigations of 1 MN force calibration machine at NPL, India (NPLI),” Meas. Sci. Rev. 12(4), 149–152 (2012).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Li, G.

Li, J.

Li, Y.

Liang, R.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Liao, C. R.

Lit, J. W. Y.

Liu, B.

Liu, D.

Liu, W. K.

Liu, Y.

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. M. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[CrossRef] [PubMed]

X. Y. Dong, Y. Liu, Z. Liu, X. Y. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun. 192(3–6), 213–217 (2001).
[CrossRef]

Liu, Y. Q.

Y. Q. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 17(2), 450–452 (2005).
[CrossRef]

Liu, Z.

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photonics Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

X. Y. Dong, Y. Liu, Z. Liu, X. Y. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun. 192(3–6), 213–217 (2001).
[CrossRef]

Lou, J. Y.

L. Zhang, J. Y. Lou, L. M. Tong, “Micro/nanofiber optical sensors,” Photonic Sens. 1(1), 31–42 (2011).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lu, C.

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photonics Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

Lu, Y. Q.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Luo, W.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Meng, C.

Minkovich, V. P.

Miyamoto, K.

K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys. 143(1), 136–142 (2008).

Monzón-Hernández, D.

Pickrell, G. R.

Ran, Y.

Ran, Z.

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

Rao, Y. J.

Y. Gong, A. Y. Ye, Y. Wu, Y. J. Rao, Y. Yao, S. Xiao, “Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment,” Opt. Express 21(13), 16181–16190 (2013).
[CrossRef] [PubMed]

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

Y. Wu, Y. J. Rao, Y. H. Chen, Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17(20), 18142–18147 (2009).
[CrossRef] [PubMed]

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Roels, J.

D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[CrossRef]

Rothhardt, M.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, M. Rothhardt, “Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers,” Appl. Opt. 48(11), 1963–1968 (2009).
[CrossRef] [PubMed]

Schuster, K.

Shen, F.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shen, X.

Shum, P.

Silva, R. M.

Sugano, K.

K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys. 143(1), 136–142 (2008).

Sun, L. P.

Sun, Q.

Tabata, O.

K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys. 143(1), 136–142 (2008).

Tam, H.

Tam, H. Y.

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photonics Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

Tan, Y. N.

Taylor, H. F.

Tong, L. M.

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. M. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[CrossRef] [PubMed]

L. Zhang, J. Y. Lou, L. M. Tong, “Micro/nanofiber optical sensors,” Photonic Sens. 1(1), 31–42 (2011).
[CrossRef]

F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Torres-Peiró, S.

Tsai, H. L.

Tsuchiya, T.

K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys. 143(1), 136–142 (2008).

Van Thourhout, D.

D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[CrossRef]

Villatoro, J.

Wan, X.

Wang, A.

Wang, D. N.

Wang, Y.

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, M. Rothhardt, “Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers,” Appl. Opt. 48(11), 1963–1968 (2009).
[CrossRef] [PubMed]

Wei, L.

Wei, T.

Wieduwilt, T.

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

Willsch, R.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Wo, J.

Wu, Y.

Xiao, H.

Xiao, S.

Xiao, Y.

Xu, F.

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Xue, L.

Yao, Y.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Ye, A. Y.

Yin, X. F.

F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Yu, H.

Yu, Y.

Zalvidea, D.

Zeng, X. K.

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

Zhang, A. P.

Zhang, H.

Zhang, J.

Zhang, L.

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

L. Zhang, J. Y. Lou, L. M. Tong, “Micro/nanofiber optical sensors,” Photonic Sens. 1(1), 31–42 (2011).
[CrossRef]

F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Zhang, W.

Zhang, Y.

Zhao, Q.

Zhou, D. P.

Zhu, T.

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

Zhu, Y.

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. Luo, J. L. Kou, Y. Chen, F. Xu, Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Chin. Phys. Lett. (1)

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett. 18(5), 643–645 (2011).

IEEE Photonics Technol. Lett. (2)

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photonics Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

Y. Q. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 17(2), 450–452 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Rev. (1)

R. Kumar, H. Kumar, A. Kumar, V. Kumar, “Long term uncertainty investigations of 1 MN force calibration machine at NPL, India (NPLI),” Meas. Sci. Rev. 12(4), 149–152 (2012).
[CrossRef]

Meas. Sci. Technol. (1)

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

Nano Lett. (1)

F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Van Thourhout, J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[CrossRef]

Nature (3)

C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451(7175), 172–175 (2008).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

X. Y. Dong, Y. Liu, Z. Liu, X. Y. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun. 192(3–6), 213–217 (2001).
[CrossRef]

Opt. Express (8)

T. Wei, Y. Han, Y. Li, H. L. Tsai, H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

J. Li, X. Shen, L. P. Sun, B. O. Guan, “Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure,” Opt. Express 21(10), 12111–12121 (2013).
[CrossRef] [PubMed]

Y. Wu, Y. J. Rao, Y. H. Chen, Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17(20), 18142–18147 (2009).
[CrossRef] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

S. Gao, L. Jin, Y. Ran, L. P. Sun, J. Li, B. O. Guan, “Temperature compensated microfiber Bragg gratings,” Opt. Express 20(16), 18281–18286 (2012).
[CrossRef] [PubMed]

Y. Gong, A. Y. Ye, Y. Wu, Y. J. Rao, Y. Yao, S. Xiao, “Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment,” Opt. Express 21(13), 16181–16190 (2013).
[CrossRef] [PubMed]

B. Dong, D. P. Zhou, L. Wei, W. K. Liu, J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16(23), 19291–19296 (2008).
[CrossRef] [PubMed]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett. (9)

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29(15), 1736–1738 (2004).
[CrossRef] [PubMed]

X. Wan, H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002).
[CrossRef] [PubMed]

T. Guo, A. Ivanov, Ch. Chen, J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
[CrossRef] [PubMed]

Y. Yu, H. Tam, W. Chung, M. S. Demokan, “Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature,” Opt. Lett. 25(16), 1141–1143 (2000).
[CrossRef] [PubMed]

J. Villatoro, V. P. Minkovich, D. Monzón-Hernández, “Temperature-independent strain sensor made from tapered holey optical fiber,” Opt. Lett. 31(3), 305–307 (2006).
[CrossRef] [PubMed]

J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett. 37(14), 2925–2927 (2012).
[CrossRef] [PubMed]

O. Frazão, R. M. Silva, J. Kobelke, K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
[CrossRef] [PubMed]

X. Fang, C. R. Liao, D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[CrossRef] [PubMed]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. M. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[CrossRef] [PubMed]

Photonic Sens. (1)

L. Zhang, J. Y. Lou, L. M. Tong, “Micro/nanofiber optical sensors,” Photonic Sens. 1(1), 31–42 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. Fujii, “Method of generating and measuring static small force using down-slope component of gravity,” Rev. Sci. Instrum. 78(6), 066104 (2007).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys. 143(1), 136–142 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of experimental setup for (a) the fabrication of the asymmetrical Fabry-Perot interferometric (AFPI) structure and (b) force sensing.

Fig. 2
Fig. 2

Reflective (blue) and transmitted spectra (red) of a typical FBG for the fabrication of the AFPI structure.

Fig. 3
Fig. 3

SEM images for the waist part of the AFPI sensor with taper lengths of (a) 20mm and (b) 40mm. The waist diameters are 7.3μm and 6.1μm, respectively.

Fig. 4
Fig. 4

(a) Interference spectra in the LR-FBG reflective bandwidth and (b) enlarged spectra in one free spectral range of the microfiber AFPI sensor as a function of the external force changes.

Fig. 5
Fig. 5

Wavelength shift of the interference spectra as a function of the external force change. (a) Microfiber AFPI sensor with a waist diameter of 7.3μm (solid circles) and similar structure in 125μm-diameter SMF (void squares); (b) Microfiber AFPI sensors with different waist diameters.

Fig. 6
Fig. 6

(a) AFPI structure in 125μm-diameter SMF and (b) its interference spectrum. Enlarged spectra (c) in the Bragg reflection band and (d) in one free spectral range as a function of external force changes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I( λ )= I FBG ( λ )+ I Fresnel ( λ )+2 I FBG ( λ ) I Fresnel ( λ ) cos( 2πOPD λ ).

Metrics