Abstract

A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46dB/0.50dB for the two independent ports, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Aslund, A. Michie, J. Canning, J. Holdsworth, and S. Fleming, “Michelson interferometer with Faraday mirrors employed in a delayed self-heterodyne interferometer,” in Optical Fiber Communication Conference, Los Angeles, USA, 6–10 Mar. 2011.
    [CrossRef]
  2. H. Zhang, Y. Dong, J. Leeson, L. Chen, X. Bao, “High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity,” Appl. Opt. 50(6), 924–929 (2011).
    [CrossRef] [PubMed]
  3. B. J. Vakoc, M. J. F. Digonnet, G. S. Kino, “Demonstration of a folded Sagnac sensor array immune to polarization-induced signal fading,” Appl. Opt. 42(36), 7132–7136 (2003).
    [CrossRef] [PubMed]
  4. P. Drexler, P. Fiala, “Utilization of Faraday mirror in fiber optic current sensors,” Radioengineering 17, 101–107 (2008).
  5. M. A. Quintela, J. M. López-Higuera, C. Jáuregui, “Polarization characteristics of a reflective erbium doped fiber amplifier with temperature changes at the Faraday rotator mirror,” Opt. Express 13(5), 1368–1376 (2005).
    [CrossRef] [PubMed]
  6. J. S. Park, S. H. Yun, S. J. Ahn, B. Y. Kim, “Polarization- and frequency-stable fiber laser for magnetic-field sensing,” Opt. Lett. 21(14), 1029–1031 (1996).
    [CrossRef] [PubMed]
  7. Y. Li, M. Jiang, C. X. Zhang, H. J. Xu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
    [CrossRef]
  8. S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38(15), 3214–3222 (1999).
    [CrossRef] [PubMed]

2013

Y. Li, M. Jiang, C. X. Zhang, H. J. Xu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[CrossRef]

2011

2008

P. Drexler, P. Fiala, “Utilization of Faraday mirror in fiber optic current sensors,” Radioengineering 17, 101–107 (2008).

2005

2003

1999

1996

Ahn, S. J.

Bao, X.

Chen, L.

Digonnet, M. J. F.

Dong, Y.

Drexler, P.

P. Drexler, P. Fiala, “Utilization of Faraday mirror in fiber optic current sensors,” Radioengineering 17, 101–107 (2008).

Fiala, P.

P. Drexler, P. Fiala, “Utilization of Faraday mirror in fiber optic current sensors,” Radioengineering 17, 101–107 (2008).

Jáuregui, C.

Jiang, M.

Y. Li, M. Jiang, C. X. Zhang, H. J. Xu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[CrossRef]

Kim, B. Y.

Kino, G. S.

Leeson, J.

Li, Y.

Y. Li, M. Jiang, C. X. Zhang, H. J. Xu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[CrossRef]

López-Higuera, J. M.

Park, J. S.

Quintela, M. A.

Riza, N. A.

Vakoc, B. J.

Xu, H. J.

Y. Li, M. Jiang, C. X. Zhang, H. J. Xu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[CrossRef]

Yuan, S.

Yun, S. H.

Zhang, C. X.

Y. Li, M. Jiang, C. X. Zhang, H. J. Xu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[CrossRef]

Zhang, H.

Appl. Opt.

IEEE Photonics Technol. Lett.

Y. Li, M. Jiang, C. X. Zhang, H. J. Xu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Radioengineering

P. Drexler, P. Fiala, “Utilization of Faraday mirror in fiber optic current sensors,” Radioengineering 17, 101–107 (2008).

Other

M. L. Aslund, A. Michie, J. Canning, J. Holdsworth, and S. Fleming, “Michelson interferometer with Faraday mirrors employed in a delayed self-heterodyne interferometer,” in Optical Fiber Communication Conference, Los Angeles, USA, 6–10 Mar. 2011.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Structure of the two-in-one Faraday rotation mirror.

Fig. 2
Fig. 2

Structure and parameters of the dual-fiber collimator.

Fig. 3
Fig. 3

Parameters of the reflection mirror.

Fig. 4
Fig. 4

Misalignment factors that may cause excess power loss.

Fig. 5
Fig. 5

Excess power loss resulting from axial misalignment.

Fig. 6
Fig. 6

Excess power loss resulting from lateral misalignment.

Fig. 7
Fig. 7

Photograph of the passively assembled two-in-one Faraday rotator mirror.

Fig. 8
Fig. 8

Test system for the Faraday rotator mirror.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r 1 = f c [( n f 1)α( n c 1)φ]
θ 1 = ( n c 1)dφ f c
φ= n f 1 n c 1 α
M=[ 1 0 0 1 ]
IL= 10 ln10 ( D ω ) 2
D 1 = 2( n c 1)dφδZ f c
D 2 =δX

Metrics