Abstract

A conformal dome optical system was established and aberration characteristics of the dome were investigated using Zernike aberration theory. The conformal dome was designed with gradient index element. The designing method was introduced and the optimizing results were analyzed in detail. The results show that the Zernike aberrations produced by the conformal dome decreased dramatically. Also, a complete conformal optical system was designed to further illustrate the aberration correction effect of gradient index elements. The results show that the utilization of gradient index optical elements not only improves the imaging quality, but also simplifies the structure of the conformal optical system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Trotta, “Precision conformal optics technology program,” Proc. SPIE 4375, 96–107 (2001).
    [CrossRef]
  2. B. G. Crowther, D. B. McKenney, J. P. Mills, “Aberrations of optical domes,” Proc. SPIE 3482, 48–61 (1998).
    [CrossRef]
  3. S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
    [CrossRef]
  4. W. Zhang, B. J. Zuo, S. Q. Chen, H. S. Xiao, Z. G. Fan, “Design of fixed correctors used in conformal optical system based on diffractive optical elements,” Appl. Opt. 52(3), 461–466 (2013).
    [CrossRef] [PubMed]
  5. Y. Li, L. Li, Y. F. Huang, J. G. Liu, “Conformal optical design with combination of static and dynamic aberration corrections,” Chinese Physics B 18(2), 565–570 (2009).
    [CrossRef]
  6. S. W. Sparrold, “Arch corrector for conformal optical systems,” Proc. SPIE 3705, 189–200 (1999).
    [CrossRef]
  7. C. E. Leroux, A. Tzschachmann, J. C. Dainty, “Pupil matching of Zernike aberrations,” Opt. Express 18(21), 21567–21572 (2010).
    [CrossRef] [PubMed]
  8. Y. M. Liu, J. Ma, H. P. Ma, X. Z. Jiang, “Zernike aberration characteristics of precision conformal optical windows,” Proc. SPIE 7544, 1–7 (2010).
    [CrossRef]
  9. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19(7), 1035–1038 (1980).
    [CrossRef] [PubMed]
  10. G. Beadie, J. S. Shirk, A. Rosenberg, P. A. Lane, E. Fleet, A. R. Kamdar, Y. Jin, M. Ponting, T. Kazmierczak, Y. Yang, A. Hiltner, E. Baer, “Optical properties of a bio-inspired gradient refractive index polymer lens,” Opt. Express 16(15), 11540–11547 (2008).
    [PubMed]
  11. D. T. Moore, “Design of singlets with continuously varying indices of refractions,” J. Opt. Soc. Am. 61(7), 886–894 (1971).
    [CrossRef]
  12. CODE V Reference Manual, ORA (2004).
  13. R. A. Flynn, E. Fleet, C. Kretzer, and G. Beadie, “Practical Design of a Layered Polymer GRIN lens,” CLEO: Applications and Technology (OSA, 2012).
  14. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).
  15. P. McCarthy and D. T. Moore, “Optical design with gradient-index elements constrained to real material properties,” Optical Fabrication and Testing, OSA (2012).
  16. W. Fu, B. G. Chen, “Design of conformal optical system based on fixed aspheric corrector,” Infrared Technology 32, 408–410 (2010).

2013 (1)

2010 (3)

C. E. Leroux, A. Tzschachmann, J. C. Dainty, “Pupil matching of Zernike aberrations,” Opt. Express 18(21), 21567–21572 (2010).
[CrossRef] [PubMed]

Y. M. Liu, J. Ma, H. P. Ma, X. Z. Jiang, “Zernike aberration characteristics of precision conformal optical windows,” Proc. SPIE 7544, 1–7 (2010).
[CrossRef]

W. Fu, B. G. Chen, “Design of conformal optical system based on fixed aspheric corrector,” Infrared Technology 32, 408–410 (2010).

2009 (1)

Y. Li, L. Li, Y. F. Huang, J. G. Liu, “Conformal optical design with combination of static and dynamic aberration corrections,” Chinese Physics B 18(2), 565–570 (2009).
[CrossRef]

2008 (1)

2001 (1)

P. A. Trotta, “Precision conformal optics technology program,” Proc. SPIE 4375, 96–107 (2001).
[CrossRef]

2000 (1)

S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
[CrossRef]

1999 (1)

S. W. Sparrold, “Arch corrector for conformal optical systems,” Proc. SPIE 3705, 189–200 (1999).
[CrossRef]

1998 (1)

B. G. Crowther, D. B. McKenney, J. P. Mills, “Aberrations of optical domes,” Proc. SPIE 3482, 48–61 (1998).
[CrossRef]

1980 (1)

1971 (1)

Baer, E.

Beadie, G.

Chen, B. G.

W. Fu, B. G. Chen, “Design of conformal optical system based on fixed aspheric corrector,” Infrared Technology 32, 408–410 (2010).

Chen, S. Q.

Crowther, B. G.

B. G. Crowther, D. B. McKenney, J. P. Mills, “Aberrations of optical domes,” Proc. SPIE 3482, 48–61 (1998).
[CrossRef]

Dainty, J. C.

Ellis, K. S.

S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
[CrossRef]

Fan, Z. G.

Fleet, E.

Fu, W.

W. Fu, B. G. Chen, “Design of conformal optical system based on fixed aspheric corrector,” Infrared Technology 32, 408–410 (2010).

Hiltner, A.

Huang, Y. F.

Y. Li, L. Li, Y. F. Huang, J. G. Liu, “Conformal optical design with combination of static and dynamic aberration corrections,” Chinese Physics B 18(2), 565–570 (2009).
[CrossRef]

Jiang, X. Z.

Y. M. Liu, J. Ma, H. P. Ma, X. Z. Jiang, “Zernike aberration characteristics of precision conformal optical windows,” Proc. SPIE 7544, 1–7 (2010).
[CrossRef]

Jin, Y.

Kamdar, A. R.

Kazmierczak, T.

Knapp, D. J.

S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
[CrossRef]

Lane, P. A.

Leroux, C. E.

Li, L.

Y. Li, L. Li, Y. F. Huang, J. G. Liu, “Conformal optical design with combination of static and dynamic aberration corrections,” Chinese Physics B 18(2), 565–570 (2009).
[CrossRef]

Li, Y.

Y. Li, L. Li, Y. F. Huang, J. G. Liu, “Conformal optical design with combination of static and dynamic aberration corrections,” Chinese Physics B 18(2), 565–570 (2009).
[CrossRef]

Liu, J. G.

Y. Li, L. Li, Y. F. Huang, J. G. Liu, “Conformal optical design with combination of static and dynamic aberration corrections,” Chinese Physics B 18(2), 565–570 (2009).
[CrossRef]

Liu, Y. M.

Y. M. Liu, J. Ma, H. P. Ma, X. Z. Jiang, “Zernike aberration characteristics of precision conformal optical windows,” Proc. SPIE 7544, 1–7 (2010).
[CrossRef]

Ma, H. P.

Y. M. Liu, J. Ma, H. P. Ma, X. Z. Jiang, “Zernike aberration characteristics of precision conformal optical windows,” Proc. SPIE 7544, 1–7 (2010).
[CrossRef]

Ma, J.

Y. M. Liu, J. Ma, H. P. Ma, X. Z. Jiang, “Zernike aberration characteristics of precision conformal optical windows,” Proc. SPIE 7544, 1–7 (2010).
[CrossRef]

Manhart, P. K.

S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
[CrossRef]

McKenney, D. B.

B. G. Crowther, D. B. McKenney, J. P. Mills, “Aberrations of optical domes,” Proc. SPIE 3482, 48–61 (1998).
[CrossRef]

Mills, J. P.

S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
[CrossRef]

B. G. Crowther, D. B. McKenney, J. P. Mills, “Aberrations of optical domes,” Proc. SPIE 3482, 48–61 (1998).
[CrossRef]

Mitchell, T. A.

S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
[CrossRef]

Moore, D. T.

Ponting, M.

Rosenberg, A.

Shirk, J. S.

Sparrold, S. W.

S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
[CrossRef]

S. W. Sparrold, “Arch corrector for conformal optical systems,” Proc. SPIE 3705, 189–200 (1999).
[CrossRef]

Trotta, P. A.

P. A. Trotta, “Precision conformal optics technology program,” Proc. SPIE 4375, 96–107 (2001).
[CrossRef]

Tzschachmann, A.

Xiao, H. S.

Yang, Y.

Zhang, W.

Zuo, B. J.

Appl. Opt. (2)

Chinese Physics B (1)

Y. Li, L. Li, Y. F. Huang, J. G. Liu, “Conformal optical design with combination of static and dynamic aberration corrections,” Chinese Physics B 18(2), 565–570 (2009).
[CrossRef]

Infrared Technology (1)

W. Fu, B. G. Chen, “Design of conformal optical system based on fixed aspheric corrector,” Infrared Technology 32, 408–410 (2010).

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

S. W. Sparrold, J. P. Mills, D. J. Knapp, K. S. Ellis, T. A. Mitchell, P. K. Manhart, “Conformal dome correction with counter-rotating phase plates,” Opt. Eng. 39(7), 1822–1829 (2000).
[CrossRef]

Opt. Express (2)

Proc. SPIE (4)

P. A. Trotta, “Precision conformal optics technology program,” Proc. SPIE 4375, 96–107 (2001).
[CrossRef]

B. G. Crowther, D. B. McKenney, J. P. Mills, “Aberrations of optical domes,” Proc. SPIE 3482, 48–61 (1998).
[CrossRef]

S. W. Sparrold, “Arch corrector for conformal optical systems,” Proc. SPIE 3705, 189–200 (1999).
[CrossRef]

Y. M. Liu, J. Ma, H. P. Ma, X. Z. Jiang, “Zernike aberration characteristics of precision conformal optical windows,” Proc. SPIE 7544, 1–7 (2010).
[CrossRef]

Other (4)

CODE V Reference Manual, ORA (2004).

R. A. Flynn, E. Fleet, C. Kretzer, and G. Beadie, “Practical Design of a Layered Polymer GRIN lens,” CLEO: Applications and Technology (OSA, 2012).

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).

P. McCarthy and D. T. Moore, “Optical design with gradient-index elements constrained to real material properties,” Optical Fabrication and Testing, OSA (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Infrared seekers: (a) seeker with a hemispherical dome; (b) seeker with a conformal dome.

Fig. 2
Fig. 2

Schematic of an ellipsoidal dome.

Fig. 3
Fig. 3

Structure of a conformal dome optical system.

Fig. 4
Fig. 4

Aberrations of the conformal dome at different FOR.

Fig. 5
Fig. 5

RMS ray aberrations of the conformal dome using different number of coefficients for optimization.

Fig. 6
Fig. 6

Index curve of the conformal dome.

Fig. 7
Fig. 7

Beam of light travels through the conformal dome.

Fig. 8
Fig. 8

Zernike aberrations of the conformal dome after optimization.

Fig. 9
Fig. 9

Schematic of a complete conformal optical system: (a) 0° FOR, (b) 30° FOR.

Fig. 10
Fig. 10

RMS wave aberration of conformal optical system at different FOR.

Fig. 11
Fig. 11

Modulation transfer function (MTF) of conformal optical system at different FOR: (a)0°, (b)10°, (c)20°, (d)30°, (e)40°.

Tables (2)

Tables Icon

Table 1 Zernike aberration polynomial

Tables Icon

Table 2 Parameters of an ellipsoidal dome

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F= L D
r= D 4F
k= 1 4 F 2 1
n( z )= n 0 + n 1 z+ n 2 z 2 ++ n 11 z 11
n= n 1 + c 2 ( n 2 n 1 )

Metrics