Abstract

A multiple-input-multiple-output (MIMO) visible light communication (VLC) system employing vertical cavity surface emitting laser (VCSEL) and spatial light modulators (SLMs) with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed and experimentally demonstrated. The transmission capacity of system is significantly increased by space-division demultiplexing scheme. With the assistance of low noise amplifier (LNA) and data comparator, good bit error rate (BER) performance, clear constellation map, and clear eye diagram are achieved for each optical channel. Such a MIMO VLC system would be attractive for providing services including data and telecommunication services. Our proposed system is suitably applicable to the lightwave communication system in wireless transmission.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and H. T. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” Conf. on Opt. Fiber Commun. (OFC) OTh1G4 (2013).
  2. Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in-door visible light communication system,” Conf. on Opt. Fiber Commun (OFC) JWA83 (2011).
  3. T. Komine, M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [CrossRef]
  4. Y. Wang, Y. Wang, N. Chi, J. Yu, H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [CrossRef] [PubMed]
  5. C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
    [CrossRef]
  6. C. Y. Chen, P. Y. Wu, H. H. Lu, Y. P. Lin, J. Y. Wen, F. C. Hu, “Bidirectional 16-QAM OFDM in-building network over SMF and free-space VLC transport,” Opt. Lett. 38(13), 2345–2347 (2013).
    [CrossRef] [PubMed]
  7. W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express 20(9), 9919–9924 (2012).
    [CrossRef] [PubMed]
  8. J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA J. Lightwave Technol. 30(24), 3946–3952 (2012).
    [CrossRef]
  9. J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Mode division multiplexing of modes with the same Azimuthal index,” IEEE Photon. Technol. Lett. 24(21), 1969–1972 (2012).
    [CrossRef]
  10. Y. C. Chi, Y. C. Li, H. Y. Wang, P. C. Peng, H. H. Lu, G. R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
    [CrossRef] [PubMed]
  11. H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).
  12. S. Bloom, “The physics of free-space optics,” AirFiber Inc 1-22 (2002).

2013

2012

2010

H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

2004

T. Komine, M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[CrossRef]

Carpenter, J.

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA J. Lightwave Technol. 30(24), 3946–3952 (2012).
[CrossRef]

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Mode division multiplexing of modes with the same Azimuthal index,” IEEE Photon. Technol. Lett. 24(21), 1969–1972 (2012).
[CrossRef]

Chang, C. H.

Chen, C. Y.

Chi, N.

Chi, Y. C.

Chow, C. W.

Henniger, H.

H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

Hu, F. C.

Huang, P. Y.

Komine, T.

T. Komine, M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[CrossRef]

Li, Y. C.

Lin, G. R.

Lin, H. C.

Lin, W. Y.

Lin, Y. P.

Liu, Y.

Liu, Y. F.

Lu, H. H.

Nakagawa, M.

T. Komine, M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[CrossRef]

Peng, P. C.

Shang, H.

Thomsen, B. C.

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Mode division multiplexing of modes with the same Azimuthal index,” IEEE Photon. Technol. Lett. 24(21), 1969–1972 (2012).
[CrossRef]

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA J. Lightwave Technol. 30(24), 3946–3952 (2012).
[CrossRef]

Tsang, H. K.

Wang, H. Y.

Wang, Y.

Wen, J. Y.

Wilfert, O.

H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

Wilkinson, T. D.

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Mode division multiplexing of modes with the same Azimuthal index,” IEEE Photon. Technol. Lett. 24(21), 1969–1972 (2012).
[CrossRef]

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA J. Lightwave Technol. 30(24), 3946–3952 (2012).
[CrossRef]

Wu, H. W.

Wu, P. Y.

Yeh, C. H.

Yu, J.

IEEE /OSA J. Lightwave Technol.

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Degenerate mode-group division multiplexing,” IEEE /OSA J. Lightwave Technol. 30(24), 3946–3952 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Carpenter, B. C. Thomsen, T. D. Wilkinson, “Mode division multiplexing of modes with the same Azimuthal index,” IEEE Photon. Technol. Lett. 24(21), 1969–1972 (2012).
[CrossRef]

IEEE Trans. Consum. Electron.

T. Komine, M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Radioengineering

H. Henniger, O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

Other

S. Bloom, “The physics of free-space optics,” AirFiber Inc 1-22 (2002).

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and H. T. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” Conf. on Opt. Fiber Commun. (OFC) OTh1G4 (2013).

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in-door visible light communication system,” Conf. on Opt. Fiber Commun (OFC) JWA83 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental configuration of our proposed MIMO VLC systems employing VCSEL and SLMs with 16-QAM-OFDM signal over a 15-m free-space link.

Fig. 2
Fig. 2

The beam divergence with acceptable divergent angle of VCSEL.

Fig. 3
Fig. 3

The optical spectrum of VCSEL.

Fig. 4
Fig. 4

A block diagram of the data comparator, in which including a fast comparator.

Fig. 5
Fig. 5

The measured BER curves and constellation map at a data stream of 2.5Gbps/2.5GHz.

Fig. 6
Fig. 6

The eye diagrams of SLM1 channel under 15 m free-space link: (a) without employing LNA and data comparator, (b) with employing LNA and data comparator.

Fig. 7
Fig. 7

System of one 16-QAM OFDM channel over a 19.5-m free-space link with a data rate of 2.5-Gbps.

Fig. 8
Fig. 8

System of one 16-QAM OFDM channel over a 6-m free-space link with a data rate of 10-Gbps.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P r = P t (DivL) 2
P r = P t (DivL) 2 e (αL)
P r = P t A r (DivL) 2 e (αL)
d(n)=a(n) e jθ(n)
d er (n)= a er (n) e j θ er (n)

Metrics