Abstract

We demonstrate an optical technique for large field of view quantitative phase imaging of reflective samples. It relies on a common-path interferometric design, which ensures high stability without the need for active stabilization. The technique provides single-shot, full-field and robust measurement of nanoscale topography of large samples. Further, the inherent stability allows reliable measurement of the temporally varying phase retardation of the liquid crystal cells, and thus enables real-time characterization of spatial light modulators. The technique’s application potential is validated through experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Whitehouse, “Surface metrology,” Meas. Sci. Technol. 8, 955–972 (1997).
    [CrossRef]
  2. J. M. Bennett, J. H. Dancy, “Stylus profiling instrument for measuring statistical properties of smooth optical surfaces,” Appl. Opt. 20, 1785–1802 (1981).
    [CrossRef] [PubMed]
  3. J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
    [CrossRef]
  4. J. E. Castle, P. A. Zhdan, “Characterization of surface topography by SEM and SFM: Problems and solutions,” J. Phys. D: Appl. Phys. 30, 722–740 (1997).
    [CrossRef]
  5. L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  6. J. C. Wyant, “Computerized interferometric surface measurements,” Appl. Opt. 52, 1–8 (2013).
    [CrossRef] [PubMed]
  7. P. Ferraro, C. D. Core, L. Miccio, S. Grilli, S. D. Nicola, A. Finizio, G. Coppola, “Phase map retrieval in digital holography: avoiding the undersampling effect by a lateral shear approach,” Opt. Lett. 32, 2233–2235 (2007).
    [CrossRef] [PubMed]
  8. L. L. Deck, “Environmentally friendly interferometry,” Proc. SPIE 5532, 159–169 (2004).
    [CrossRef]
  9. D. M. Sykora, P. de Groot, “Instantaneous interferometry: Another view,” International Optical Design Conference and Optical Fabrication and testing, OMA1 (2010).
  10. D. M. Sykora, M. L. Holmes, “Dynamic measurements using a Fizeau interferometer,” Proc. SPIE 8082, 80821R (2011).
    [CrossRef]
  11. X. Xun, R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400–6406 (2004).
    [CrossRef] [PubMed]
  12. H. Zhang, J. Zhang, L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
    [CrossRef]
  13. R. Wang, D. Li, M. Hu, J. Tian, “Phase calibration of spatial light modulators by heterodyne interferometry,” Proc. SPIE 7848, 78481F (2010).
    [CrossRef]
  14. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12, 6403–6409 (2004).
    [CrossRef] [PubMed]
  15. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. Wulff, J. Courtial, M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13, 3777–3786 (2005).
    [CrossRef] [PubMed]
  16. M. R. Beversluis, L. Novotny, S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).
    [CrossRef] [PubMed]
  17. D. J. Cho, S. T. Thurman, J. T. Donner, G. M. Morris, “Characteristics of a 128 × 128 liquid-crystal spatial light modulator for wave-front generation,” Opt. Lett. 23, 969–971 (1998).
    [CrossRef]
  18. J. Oton, P. Ambs, M. S. Millan, E. Perez-Cabre, “Dynamic calibration for improving the speed of a parallel-aligned liquid-crystal-on-silicon display,” Appl. Opt. 48, 4616–4624 (2009).
    [CrossRef] [PubMed]
  19. G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [CrossRef] [PubMed]
  20. C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Science & Applications 1, e30 (2012).
  21. R. Zhou, C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013).
    [CrossRef] [PubMed]
  22. B. Bhaduri, C. Edwards, R. Zhou, H. Pham, L. L. Godard, G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. (accepted)
  23. T. Ikeda, G. Popescu, R. R. Dasari, M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [CrossRef] [PubMed]
  24. D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(Wiley-Interscience, 1998).
  25. J. M. Huntley, H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993).
    [CrossRef] [PubMed]

2013 (2)

J. C. Wyant, “Computerized interferometric surface measurements,” Appl. Opt. 52, 1–8 (2013).
[CrossRef] [PubMed]

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013).
[CrossRef] [PubMed]

2012 (1)

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Science & Applications 1, e30 (2012).

2011 (1)

D. M. Sykora, M. L. Holmes, “Dynamic measurements using a Fizeau interferometer,” Proc. SPIE 8082, 80821R (2011).
[CrossRef]

2010 (1)

R. Wang, D. Li, M. Hu, J. Tian, “Phase calibration of spatial light modulators by heterodyne interferometry,” Proc. SPIE 7848, 78481F (2010).
[CrossRef]

2009 (1)

2007 (2)

H. Zhang, J. Zhang, L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[CrossRef]

P. Ferraro, C. D. Core, L. Miccio, S. Grilli, S. D. Nicola, A. Finizio, G. Coppola, “Phase map retrieval in digital holography: avoiding the undersampling effect by a lateral shear approach,” Opt. Lett. 32, 2233–2235 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

2004 (3)

2003 (1)

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

1998 (1)

1997 (2)

J. E. Castle, P. A. Zhdan, “Characterization of surface topography by SEM and SFM: Problems and solutions,” J. Phys. D: Appl. Phys. 30, 722–740 (1997).
[CrossRef]

D. J. Whitehouse, “Surface metrology,” Meas. Sci. Technol. 8, 955–972 (1997).
[CrossRef]

1994 (1)

1993 (1)

1981 (1)

Abeles, J. H.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Adesida, I.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Ambs, P.

Arbabi, A.

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013).
[CrossRef] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Science & Applications 1, e30 (2012).

Bae, J. W.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Bennett, J. M.

Beversluis, M. R.

Bhaduri, B.

B. Bhaduri, C. Edwards, R. Zhou, H. Pham, L. L. Godard, G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. (accepted)

Cao, Z.

Castle, J. E.

J. E. Castle, P. A. Zhdan, “Characterization of surface topography by SEM and SFM: Problems and solutions,” J. Phys. D: Appl. Phys. 30, 722–740 (1997).
[CrossRef]

Cho, D. J.

Cohn, R. W.

Cooper, J.

Coppola, G.

Core, C. D.

Courtial, J.

Dancy, J. H.

Dasari, R. R.

de Groot, P.

L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[CrossRef] [PubMed]

D. M. Sykora, P. de Groot, “Instantaneous interferometry: Another view,” International Optical Design Conference and Optical Fabrication and testing, OMA1 (2010).

Deck, L.

Deck, L. L.

L. L. Deck, “Environmentally friendly interferometry,” Proc. SPIE 5532, 159–169 (2004).
[CrossRef]

Donner, J. T.

Edwards, C.

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013).
[CrossRef] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Science & Applications 1, e30 (2012).

B. Bhaduri, C. Edwards, R. Zhou, H. Pham, L. L. Godard, G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. (accepted)

Feld, M. S.

Ferraro, P.

Finizio, A.

Ghiglia, D. C.

D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(Wiley-Interscience, 1998).

Godard, L. L.

B. Bhaduri, C. Edwards, R. Zhou, H. Pham, L. L. Godard, G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. (accepted)

Goddard, L. L.

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013).
[CrossRef] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Science & Applications 1, e30 (2012).

Grilli, S.

Holmes, M. L.

D. M. Sykora, M. L. Holmes, “Dynamic measurements using a Fizeau interferometer,” Proc. SPIE 8082, 80821R (2011).
[CrossRef]

Hu, L.

Hu, M.

R. Wang, D. Li, M. Hu, J. Tian, “Phase calibration of spatial light modulators by heterodyne interferometry,” Proc. SPIE 7848, 78481F (2010).
[CrossRef]

Huntley, J. M.

Ikeda, T.

Jang, J. H.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Jordan, P.

Kwakernaak, M.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Lepore, A.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Li, D.

R. Wang, D. Li, M. Hu, J. Tian, “Phase calibration of spatial light modulators by heterodyne interferometry,” Proc. SPIE 7848, 78481F (2010).
[CrossRef]

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12, 6403–6409 (2004).
[CrossRef] [PubMed]

Liu, Y.

Miccio, L.

Millan, M. S.

Morris, G. M.

Mu, Q.

Nicola, S. D.

Novotny, L.

Oton, J.

Padgett, M.

Perez-Cabre, E.

Pham, H.

B. Bhaduri, C. Edwards, R. Zhou, H. Pham, L. L. Godard, G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. (accepted)

Piestun, R.

Popescu, G.

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013).
[CrossRef] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Science & Applications 1, e30 (2012).

G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[CrossRef] [PubMed]

B. Bhaduri, C. Edwards, R. Zhou, H. Pham, L. L. Godard, G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. (accepted)

Pritt, M. D.

D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(Wiley-Interscience, 1998).

Rommel, S. L.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Saldner, H.

Schonbrun, E.

Selvanathan, D.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Stranick, S. J.

Sykora, D. M.

D. M. Sykora, M. L. Holmes, “Dynamic measurements using a Fizeau interferometer,” Proc. SPIE 8082, 80821R (2011).
[CrossRef]

D. M. Sykora, P. de Groot, “Instantaneous interferometry: Another view,” International Optical Design Conference and Optical Fabrication and testing, OMA1 (2010).

Thurman, S. T.

Tian, J.

R. Wang, D. Li, M. Hu, J. Tian, “Phase calibration of spatial light modulators by heterodyne interferometry,” Proc. SPIE 7848, 78481F (2010).
[CrossRef]

Wang, R.

R. Wang, D. Li, M. Hu, J. Tian, “Phase calibration of spatial light modulators by heterodyne interferometry,” Proc. SPIE 7848, 78481F (2010).
[CrossRef]

Whitehouse, D. J.

D. J. Whitehouse, “Surface metrology,” Meas. Sci. Technol. 8, 955–972 (1997).
[CrossRef]

Wu, L.

H. Zhang, J. Zhang, L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[CrossRef]

Wulff, K.

Wyant, J. C.

Xuan, L.

Xun, X.

Zhang, H.

H. Zhang, J. Zhang, L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[CrossRef]

Zhang, J.

H. Zhang, J. Zhang, L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[CrossRef]

Zhao, W.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Zhdan, P. A.

J. E. Castle, P. A. Zhdan, “Characterization of surface topography by SEM and SFM: Problems and solutions,” J. Phys. D: Appl. Phys. 30, 722–740 (1997).
[CrossRef]

Zhou, R.

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013).
[CrossRef] [PubMed]

B. Bhaduri, C. Edwards, R. Zhou, H. Pham, L. L. Godard, G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. (accepted)

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

J. E. Castle, P. A. Zhdan, “Characterization of surface topography by SEM and SFM: Problems and solutions,” J. Phys. D: Appl. Phys. 30, 722–740 (1997).
[CrossRef]

Light: Science & Applications (1)

C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light: Science & Applications 1, e30 (2012).

Meas. Sci. Technol. (2)

D. J. Whitehouse, “Surface metrology,” Meas. Sci. Technol. 8, 955–972 (1997).
[CrossRef]

H. Zhang, J. Zhang, L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[CrossRef]

Nano Lett. (1)

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13, 3716–3721 (2013).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (3)

L. L. Deck, “Environmentally friendly interferometry,” Proc. SPIE 5532, 159–169 (2004).
[CrossRef]

D. M. Sykora, M. L. Holmes, “Dynamic measurements using a Fizeau interferometer,” Proc. SPIE 8082, 80821R (2011).
[CrossRef]

R. Wang, D. Li, M. Hu, J. Tian, “Phase calibration of spatial light modulators by heterodyne interferometry,” Proc. SPIE 7848, 78481F (2010).
[CrossRef]

Other (3)

D. M. Sykora, P. de Groot, “Instantaneous interferometry: Another view,” International Optical Design Conference and Optical Fabrication and testing, OMA1 (2010).

D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(Wiley-Interscience, 1998).

B. Bhaduri, C. Edwards, R. Zhou, H. Pham, L. L. Godard, G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. (accepted)

Supplementary Material (1)

» Media 1: AVI (2878 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Wide-field QPI setup. FC: Fiber Coupler, CL:Collimator lens, P:Polarizer, BS:Beam Splitter, L1–L4:Lenses with 400 mm focal length, L2–L3:Lenses with 75 mm focal length, FP1:Fourier Plane of lens L1, IP:Image Plane, FP2:Fourier Plane of lens L3, M:Mirror.

Fig. 2
Fig. 2

(a) Temporal standard deviation σt (x, y) of noise in nm. (b) Histogram of σt. (c) Spatial standard deviation σs(t).

Fig. 3
Fig. 3

Recorded interferograms for the (a) surface with features and (c) planar surface. For regions marked with white boxes in (a) and (c), the fringes are shown in (b) and (d). (e) Estimated height map in nm. (f) Histogram of height.

Fig. 4
Fig. 4

(a) Projected pattern on SLM. (b) Recorded interferogram. Measured phase retardation in radians at (c) t = 0, GS=0, (d) t = 2.5, GS=100, (e) t = 3.75, GS=150, (f) t = 5, GS=200, and (g) t = 6.25 seconds, GS=250 (see Media 1). (h) Temporally varying mean phase retardation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | U s ( x , y ) | 2 + | U 1 | 2 + 2 | U s ( x , y ) | | U 1 | cos [ β 0 x + ϕ ( x , y ) ]
ϕ ( x , y , t ) = 4 π λ Δ n ( x , y , t ) d

Metrics