Abstract

We have experimentally demonstrated a reconfigurable silicon thermo-optical device able to tailor its intrinsic spectral optical response by means of the thermo-optical control of individual and uncoupled resonant modes of micro-ring resonators. Preliminarily results show that the device’s optical response can be tailored to build up distinct and reconfigurable logic levels for optical signal processing, as well as control of overall figures of merit, such as free-spectral-range, extinction ratio and 3dB bandwidth. In addition, the micro-heaters on top of the ring resonators are able to tune the resonant wavelength with efficiency of 0.25 nm/mW within a range of up to 10 nm, as well as able to switch the resonant wavelength within fall and rise time of 15 μs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and G. Guillot, Optical Interconnects - The Silicon Approach (Springer-Verlag, Heidelberg, 2006).
  2. M. Lipson, “Guiding, modulating and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  3. V. R. Almeida, R. R. Panepucci, M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  4. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  5. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [CrossRef] [PubMed]
  6. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
    [CrossRef] [PubMed]
  7. D. T. H. Tan, P. C. Sun, Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun 1(8), 116 (2010).
    [CrossRef] [PubMed]
  8. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
    [CrossRef]
  9. W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
    [CrossRef] [PubMed]
  10. M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu, T. Y. Liow, Q. G. Lo, O. Vänskä, S. Honkanen, I. Tittonen, “Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators,” Opt. Express 21(8), 9974–9981 (2013).
    [CrossRef] [PubMed]
  11. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  12. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009).
    [CrossRef] [PubMed]
  13. W. S. Fegadolli, S. H. Kim, P. A. Postigo, A. Scherer, “Hybrid single quantum well InP/Si nanobeam lasers for Silicon Photonics,” Opt. Lett. 38(22), 4656–4658 (2013).
    [CrossRef] [PubMed]
  14. T. Creazzo, E. Marchena, S. B. Krasulick, P. K. L. Yu, D. V. Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, A. Mizrahi, “Integrated tunable CMOS laser,” Opt. Express 21(23), 28048–28053 (2013).
    [CrossRef]
  15. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
    [CrossRef] [PubMed]
  16. S. Sahni, X. Luo, J. Liu, Y. H. Xie, E. Yablonovitch, “Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator,” Opt. Lett. 33(10), 1138–1140 (2008).
    [CrossRef] [PubMed]
  17. S. Assefa, F. Xia, Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [CrossRef] [PubMed]
  18. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [CrossRef] [PubMed]
  19. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
    [CrossRef] [PubMed]
  20. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012).
    [CrossRef] [PubMed]
  21. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [CrossRef]
  22. H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
    [CrossRef] [PubMed]
  23. W. S. Fegadolli, V. R. Almeida, J. E. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
    [CrossRef] [PubMed]
  24. C. K. Madsen, G. Lenz, “Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
    [CrossRef]
  25. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012).
    [CrossRef] [PubMed]
  26. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38(5), 733–735 (2013).
    [CrossRef] [PubMed]
  27. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21(13), 15706–15718 (2013).
    [CrossRef] [PubMed]
  28. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [CrossRef] [PubMed]
  29. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
    [CrossRef] [PubMed]

2013 (6)

2012 (3)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012).
[CrossRef] [PubMed]

2011 (5)

W. S. Fegadolli, V. R. Almeida, J. E. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (2)

2008 (1)

2007 (1)

2006 (2)

2005 (2)

M. Lipson, “Guiding, modulating and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2003 (1)

1998 (1)

C. K. Madsen, G. Lenz, “Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
[CrossRef]

Adibi, A.

Almeida, V. R.

Asghari, M.

Assefa, S.

S. Assefa, F. Xia, Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Atabaki, A. H.

Atwater, H. A.

Avouris, P.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[CrossRef] [PubMed]

Barea, L. A. M.

Barwicz, T.

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Blivin, C. C.

Bowers, J. E.

Cai, H.

Chen, Y. F.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012).
[CrossRef] [PubMed]

Chetrit, Y.

Cohen, O.

Cohen, R.

Creazzo, T.

Cunningham, J. E.

Dallesasse, J. M.

DeRose, C.

Desiatov, B.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Diest, K. A.

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Dong, P.

Eftekhar, A. A.

Erdmanis, M.

Fainman, Y.

D. T. H. Tan, P. C. Sun, Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun 1(8), 116 (2010).
[CrossRef] [PubMed]

Fan, S.

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Fang, A. W.

Fedeli, J.-M.

Fegadolli, W. S.

Feng, D.

Feng, L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012).
[CrossRef] [PubMed]

Fournier, M.

Frateschi, N.

Gardes, F. Y.

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Ghaffari, A.

Goykhman, I.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Grosse, P.

He, L.

Honkanen, S.

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Hu, Y.

Ippen, E. P.

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Jones, R.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Karvonen, L.

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Kim, S. H.

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Krasulick, S. B.

Krishnamoorthy, A. V.

Lenz, G.

C. K. Madsen, G. Lenz, “Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
[CrossRef]

Levy, U.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Li, G.

Liang, H.

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[CrossRef] [PubMed]

Liow, T. Y.

Lipson, M.

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

M. Lipson, “Guiding, modulating and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Lira, H.

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Liu, J.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Lo, Q. G.

Lu, M. H.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012).
[CrossRef] [PubMed]

Luo, X.

Madsen, C. K.

C. K. Madsen, G. Lenz, “Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
[CrossRef]

Marchena, E.

Mashanovich, G.

Mizrahi, A.

Morse, M. M.

Mueller, T.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[CrossRef] [PubMed]

Nielson, G. N.

Oliveira, J. E.

Oliveira, J. E. B.

Orden, D. V.

Panepucci, R. R.

Paniccia, M. J.

Park, H.

Popovic, M. A.

Postigo, P. A.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Qian, W.

Rakich, P. T.

Reed, G. T.

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Rubin, D.

Sahni, S.

Sarid, G.

Säynätjoki, A.

Scherer, A.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Shafiiha, R.

Shah Hosseini, E.

Shappir, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Shearn, M. J.

Smith, H. I.

Spann, J. Y.

Stone, R. J.

Sun, J.

Sun, P. C.

D. T. H. Tan, P. C. Sun, Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun 1(8), 116 (2010).
[CrossRef] [PubMed]

Sun, X.

Tan, D. T. H.

D. T. H. Tan, P. C. Sun, Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun 1(8), 116 (2010).
[CrossRef] [PubMed]

Thomson, D. J.

Tittonen, I.

Trotter, D. C.

Tu, X.

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[CrossRef] [PubMed]

Valini, F.

Vänskä, O.

Vargas, G.

Vlasov, Y. A.

S. Assefa, F. Xia, Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Wang, X.

Watts, M. R.

Xia, F.

S. Assefa, F. Xia, Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[CrossRef] [PubMed]

Xie, Y. H.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Xu, Y. L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012).
[CrossRef] [PubMed]

Yablonovitch, E.

Yariv, A.

Yegnanarayanan, S.

Yin, T.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Young, R. W.

Yu, P. K. L.

Yu, Z.

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Zadok, A.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

C. K. Madsen, G. Lenz, “Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998).
[CrossRef]

J. Lightwave Technol. (2)

Nano Lett. (1)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Nat Commun (1)

D. T. H. Tan, P. C. Sun, Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun 1(8), 116 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Nature (3)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[CrossRef] [PubMed]

S. Assefa, F. Xia, Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Opt. Express (11)

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012).
[CrossRef] [PubMed]

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21(13), 15706–15718 (2013).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
[CrossRef] [PubMed]

W. S. Fegadolli, V. R. Almeida, J. E. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[CrossRef] [PubMed]

M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu, T. Y. Liow, Q. G. Lo, O. Vänskä, S. Honkanen, I. Tittonen, “Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators,” Opt. Express 21(8), 9974–9981 (2013).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

T. Creazzo, E. Marchena, S. B. Krasulick, P. K. L. Yu, D. V. Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, A. Mizrahi, “Integrated tunable CMOS laser,” Opt. Express 21(23), 28048–28053 (2013).
[CrossRef]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Other (1)

L. Pavesi and G. Guillot, Optical Interconnects - The Silicon Approach (Springer-Verlag, Heidelberg, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope micrograph of (a) single ring resonator and (b) bus waveguide after exposed and etched; (c) final device passivated with a thermal oxide layer and integrated with micro-heaters and pad contacts atop; and (d) the scaled region of a ring resonator seen in (c).

Fig. 2
Fig. 2

(a) Optical response of a single ring resonator as a function of the electric current applied to the micro-heaters; (b) resonant wavelength as a function of the electrical power and electric current applied to the micro-heaters. (c) Temporal behavior of the modulation and detected signals

Fig. 3
Fig. 3

(a) Optical response of the device in transmission under two conditions: no bias current applied, and appropriate bias currents applied such that the “Level 0” was established. (b) Extinction ratio and bandwidth comparison between a sing ring resonator and Persiana structrure properly biased.

Fig. 4
Fig. 4

(a) Optical response of the device operating on Levels 0 and 1, (b) extinction ration as a function of wavelength.

Metrics