Abstract

Abstract: Optical-domain subsampling enables Fourier-domain OCT imaging at high-speeds and extended depth ranges while limiting the required acquisition bandwidth. To perform optical-domain subsampling, a wavelength-stepped rather than a wavelength-swept source is required. This preliminary study introduces a novel design for a rapid wavelength-stepped laser source that uses dispersive fibers in combination with a fast lithium-niobate modulator to achieve wavelength selection. A laser with 200 GHz wavelength-stepping and a sweep rate of 9 MHz over a 94 nm range at a center wavelength of 1550 nm is demonstrated. A reconfiguration of this source design to a continuous wavelength-swept light for conventional Fourier-domain OCT is also demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun, C. Boudoux, G. J. Tearney, B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?id=74886 .
    [CrossRef] [PubMed]
  2. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-35-17-2919 .
    [CrossRef] [PubMed]
  3. R. Huber, M. Wojtkowski, J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3225 .
    [CrossRef] [PubMed]
  4. R. Huber, D. C. Adler, J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-31-20-2975 .
    [CrossRef] [PubMed]
  5. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-14-14685 .
    [CrossRef] [PubMed]
  6. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-4-3044 .
    [CrossRef] [PubMed]
  7. S. Yamashita, M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9299–9306 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-20-9299 .
    [CrossRef] [PubMed]
  8. Y. Nakazaki, S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-10-8310 .
    [CrossRef] [PubMed]
  9. H. Don Lee, J. H. Lee, M. Y. Jeong, C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-15-14586 .
    [CrossRef] [PubMed]
  10. Y. Takubo, S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express 21(4), 5130–5139 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-4-5130 .
    [CrossRef] [PubMed]
  11. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M1–8 (2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1275367 .
  12. M. Siddiqui, B. J. Vakoc, “Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography,” Opt. Express 20(16), 17938–17951 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-16-17938 .
    [CrossRef] [PubMed]
  13. G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L1–6 (2011). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1275367 .
    [CrossRef]
  14. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-18-14095 .
    [CrossRef] [PubMed]
  15. S. Moon, D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-24-11575 .
    [CrossRef] [PubMed]
  16. C. M. Eigenwillig, B. R. Biedermann, W. Wieser, R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17(21), 18794–18807 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-21-18794 .
    [CrossRef] [PubMed]
  17. T. Kraetschmer, D. Dagel, S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33(7), 738–740 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-33-7-738 .
    [CrossRef] [PubMed]
  18. B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 30(10), 1497–1503 (1982).
    [CrossRef]
  19. D. Derickson, ed., Fiber Optic Test and Measurement (Prentice Hall, 1998), Chap. 12.

2013

2012

2011

2010

2009

2008

2006

2003

1982

B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 30(10), 1497–1503 (1982).
[CrossRef]

Adler, D. C.

Asano, M.

Biedermann, B. R.

Boudoux, C.

Bouma, B. E.

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 30(10), 1497–1503 (1982).
[CrossRef]

Dagel, D.

Don Lee, H.

Eigenwillig, C. M.

Fujimoto, J. G.

Gu, X.

Huber, R.

Jeong, M. Y.

Kim, C. S.

Kim, D. Y.

Klein, T.

Kraetschmer, T.

Lee, J. H.

Liu, G. Y.

Mariampillai, A.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 30(10), 1497–1503 (1982).
[CrossRef]

Moon, S.

Munce, N. R.

Nakazaki, Y.

Oh, W. Y.

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 30(10), 1497–1503 (1982).
[CrossRef]

Sanders, S. T.

Shishkov, M.

Siddiqui, M.

Standish, B. A.

Takubo, Y.

Tearney, G. J.

Vakoc, B. J.

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 30(10), 1497–1503 (1982).
[CrossRef]

Vitkin, I. A.

Wieser, W.

Wojtkowski, M.

Yamashita, S.

Yun, S. H.

IEEE Trans. Microw. Theory Tech.

B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 30(10), 1497–1503 (1982).
[CrossRef]

Opt. Express

R. Huber, M. Wojtkowski, J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3225 .
[CrossRef] [PubMed]

S. Moon, D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-24-11575 .
[CrossRef] [PubMed]

S. Yamashita, M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9299–9306 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-20-9299 .
[CrossRef] [PubMed]

G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-18-14095 .
[CrossRef] [PubMed]

Y. Nakazaki, S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-10-8310 .
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, W. Wieser, R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17(21), 18794–18807 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-21-18794 .
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-14-14685 .
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-4-3044 .
[CrossRef] [PubMed]

H. Don Lee, J. H. Lee, M. Y. Jeong, C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-15-14586 .
[CrossRef] [PubMed]

M. Siddiqui, B. J. Vakoc, “Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography,” Opt. Express 20(16), 17938–17951 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-16-17938 .
[CrossRef] [PubMed]

Y. Takubo, S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express 21(4), 5130–5139 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-4-5130 .
[CrossRef] [PubMed]

Opt. Lett.

Other

D. Derickson, ed., Fiber Optic Test and Measurement (Prentice Hall, 1998), Chap. 12.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M1–8 (2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1275367 .

G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L1–6 (2011). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1275367 .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The laser design is composed of positive and negative chromatically dispersive elements, a fast intensity modulator and a Fabry Perot etalon to generate a rapid wavelength-stepped laser output.

Fig. 2
Fig. 2

A schematic of the wavelength-stepped laser (PC: polarization controller; FP: Fabry Perot etalon; SOA: semiconductor optical amplifier; IM: intensity modulator; DCF: dispersion compensating fiber; CDF: 39.394 km SMF-28e + chromatic dispersion fiber (655.7 ps/nm at 1550 nm); DDG: digital delay generator; PG: pulse generator).

Fig. 3
Fig. 3

The absolute group delay of the combined positive and negative dispersion fibers as a function of wavelength. Red squares: measured data. Blue curve: 3rd-order polynomial fitting. The group delay averaged 216.9 µs across the lasing bandwidth with variations of approximately 0.45 ns.

Fig. 4
Fig. 4

Measured jitter of the pulses driving the laser intensity modulator. Blue bars: histogram. Red curve: normal fit. Jitter (defined as twice the standard deviation) was measured to be approximately 80 ps.

Fig. 5
Fig. 5

(a) Typical spectrum output of the wavelength-stepped laser source. The total tuning range is approximately 94 nm. (b) Laser output in the time domain at a repetition rate of over 9 MHz. The generation of temporally separated optical pulses for each wavelength are also shown with 2 GHz receiver bandwidth limitations. (c) The double-pass coherence length of the wavelength-stepped (optical-domain subsampled) laser was measured to be 32 mm (1/e). (d) Measured point spread functions at different mirror distance in air. The measured axial resolution in air was 27.4 µm at 0.125 mm mirror distance.

Fig. 6
Fig. 6

(a) The lasing spectrum of the wavelength-swept laser was measured to be 87 nm. (b) The laser output in the time domain with a sweep time of approximately 60 ns. (c) The coherence length measurements were limited to 1.75 mm distance by the 2 GHz bandwidth of the oscilloscope. The measured double-pass coherence length of the laser is extrapolated to approximately 2 mm. (d) Point spread functions measured at various distances in air. The axial resolution at a mirror distance of 0.1 mm was measured to be 25 µm. The difference in coherence lengths between panels (c) and (d) is due to a high sensitivity of the laser (in the continuous sweep configuration) to variations in the electrical pulse parameters. A more stable and repeatable pulse generator is likely to improve overall source stability and performance in this configuration.

Metrics