Abstract

We demonstrate imaging of blood cells enclosed in chicken skin tissue using speckle scanning microscopy (SSM). Clear images of multiple cells were obtained with subcellular resolution and good image fidelity, provided that the object dimension was smaller than the maximum scanning range of the speckle pattern. These results point to the potential and the challenges of using SSM technique for biological imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [CrossRef]
  2. O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [CrossRef]
  3. O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [CrossRef]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [CrossRef]
  5. H. X. He, Y. F. Guan, J. Y. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
    [CrossRef] [PubMed]
  6. G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
    [CrossRef] [PubMed]
  7. Z. Yaqoob, D. Psaltis, M. S. Feld, C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  8. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
    [CrossRef] [PubMed]
  9. X. Yang, C. L. Hsieh, Y. Pu, D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
    [CrossRef] [PubMed]
  10. X. A. Xu, H. L. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [CrossRef] [PubMed]
  11. K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
    [CrossRef] [PubMed]
  12. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun 3, 928–936 (2012).
    [CrossRef] [PubMed]
  13. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
    [CrossRef] [PubMed]
  14. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010).
    [CrossRef] [PubMed]
  15. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [CrossRef] [PubMed]
  16. T. Cižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun 3, 1027 (2012).
    [CrossRef] [PubMed]
  17. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [CrossRef] [PubMed]
  18. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
    [CrossRef]
  19. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [CrossRef] [PubMed]
  20. S. C. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
    [CrossRef] [PubMed]
  21. J. W. Goodman, “Some Fundamental Properties of Speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
    [CrossRef]
  22. J. R. Fienup, “Phase Retrieval Algorithms: a Comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [CrossRef] [PubMed]
  23. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [CrossRef] [PubMed]
  24. J. D. Bancroft, A. D. Floyd, and S. K. Suvarna, Bancroft's Theory and Practice of Histological Techniques (Churchill Livingstone Elsevier, 2013), Chap. 1.
  25. M. Neumann, D. Gabel, “Simple method for reduction of autofluorescence in fluorescence microscopy,” J. Histochem. Cytochem. 50(3), 437–439 (2002).
    [CrossRef] [PubMed]
  26. R. L. Cecil, L. Goldman, and A. I. Schafer, Goldman's Cecil Medicine (Elsevier, 2012), Chap. 7.

2013 (2)

H. X. He, Y. F. Guan, J. Y. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
[CrossRef] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

2012 (10)

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

X. Yang, C. L. Hsieh, Y. Pu, D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[CrossRef] [PubMed]

K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun 3, 928–936 (2012).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

T. Cižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun 3, 1027 (2012).
[CrossRef] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

2011 (2)

X. A. Xu, H. L. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

2010 (3)

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
[CrossRef] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010).
[CrossRef] [PubMed]

2008 (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

2007 (1)

G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

2002 (1)

M. Neumann, D. Gabel, “Simple method for reduction of autofluorescence in fluorescence microscopy,” J. Histochem. Cytochem. 50(3), 437–439 (2002).
[CrossRef] [PubMed]

1998 (1)

1988 (1)

S. C. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

1982 (1)

1976 (1)

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010).
[CrossRef] [PubMed]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Caravaca-Aguirre, A. M.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

Choi, Y.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

Cižmár, T.

T. Cižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun 3, 1027 (2012).
[CrossRef] [PubMed]

Conkey, D. B.

Cui, M.

K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Dholakia, K.

T. Cižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun 3, 1027 (2012).
[CrossRef] [PubMed]

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun 3, 928–936 (2012).
[CrossRef] [PubMed]

Eick, A. A.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Feng, S. C.

S. C. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Fienup, J. R.

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Fiolka, R.

K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

Freyer, J. P.

Gabel, D.

M. Neumann, D. Gabel, “Simple method for reduction of autofluorescence in fluorescence microscopy,” J. Histochem. Cytochem. 50(3), 437–439 (2002).
[CrossRef] [PubMed]

Gigan, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010).
[CrossRef] [PubMed]

Goodman, J. W.

Grange, R.

Guan, Y. F.

He, H. X.

Hielscher, A. H.

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Hsieh, C. L.

Johnson, T. M.

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun 3, 928–936 (2012).
[CrossRef] [PubMed]

Kane, C.

S. C. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Katz, O.

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Kim, J.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

Kim, M.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

Laporte, G.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

Lee, P. A.

S. C. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Liu, H. L.

X. A. Xu, H. L. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

Mourant, J. R.

Neumann, M.

M. Neumann, D. Gabel, “Simple method for reduction of autofluorescence in fluorescence microscopy,” J. Histochem. Cytochem. 50(3), 437–439 (2002).
[CrossRef] [PubMed]

Park, Q. H.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

Piestun, R.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010).
[CrossRef] [PubMed]

Psaltis, D.

Pu, Y.

Shen, D.

Si, K.

K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Small, E.

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Stone, A. D.

S. C. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Wang, L. V.

X. A. Xu, H. L. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun 3, 928–936 (2012).
[CrossRef] [PubMed]

Xu, X. A.

X. A. Xu, H. L. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Yang, C.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Yang, C. H.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun 3, 928–936 (2012).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

Yang, X.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

Zhou, J. Y.

Appl. Opt. (2)

J. Histochem. Cytochem. (1)

M. Neumann, D. Gabel, “Simple method for reduction of autofluorescence in fluorescence microscopy,” J. Histochem. Cytochem. 50(3), 437–439 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Nat. Commun (3)

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun 3, 928–936 (2012).
[CrossRef] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010).
[CrossRef] [PubMed]

T. Cižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun 3, 1027 (2012).
[CrossRef] [PubMed]

Nat. Photonics (9)

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[CrossRef]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

X. A. Xu, H. L. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. Lett. (2)

S. C. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[CrossRef] [PubMed]

Science (1)

G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Other (2)

R. L. Cecil, L. Goldman, and A. I. Schafer, Goldman's Cecil Medicine (Elsevier, 2012), Chap. 7.

J. D. Bancroft, A. D. Floyd, and S. K. Suvarna, Bancroft's Theory and Practice of Histological Techniques (Churchill Livingstone Elsevier, 2013), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram on the working principle of SSM.

Fig. 2
Fig. 2

Normalized correlation verses tilting angle for different tissues.

Fig. 3
Fig. 3

(a) object to be imaged (128 × 128 μm2); (b)-(d): scanning range 128 μm, equals to the object size; (b) calculated autocorrelation of the object within the scanning range; (c) averaged autocorrelation of 30 intensity maps; (d) a retrieved object from (c); (e)-(g): scanning range 96 μm, equals to the parts within the red square of (a); (h)-(j): scanning range 64 μm, equals to the parts within the yellow square of (a); (k)-(m): scanning range 32 μm, equals to the parts within the white square of (a); (n) normalized error (between the reconstructed image and the parts of object within the scanning range) varies with scanning range

Fig. 4
Fig. 4

(a) Wide field fluorescence image of a white blood cell; (b) calculated autocorrelation of (a); (c) reconstructed object from the calculated autocorrelation (b); (d) a typical two-dimensional fluorescence intensity map; (e) averaged autocorrelation of 30 intensity maps; (f) reconstructed image from the average autocorrelation (e). Scale bar: 10 μm.

Fig. 5
Fig. 5

(a) Wide field fluorescence image of two red blood cells and two white blood cells; (b) reconstructed image of the blood cells enclosed in chicken skin; scale bar: 10 μm

Metrics