Abstract

Surface damage is known to occur at fluences well below the intrinsic limit of the fused silica. A native surface precursor can absorb sub band-gap light and initiate a process which leads to catastrophic damage many micrometers deep with prominent fracture networks. Previously, the absorption front model of damage initiation has been proposed to explain how this nano-scale absorption can lead to macro-scale damage. However, model precursor systems designed to study initiation experimentally have not been able to clearly reproduce these damage events. In our study, we create artificial absorbers on fused silica substrates to investigate precursor properties critical for native surface damage initiation. Thin optically absorbing films of different materials were deposited on silica surfaces and then damage tested and characterized. We demonstrated that strong interfacial adhesion strength between absorbers and silica is crucial for the launch of an absorption front and subsequent damage initiation. Simulations using the absorption-front model are performed and agree qualitatively with experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
    [CrossRef] [PubMed]
  2. J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
    [CrossRef]
  3. P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004).
    [CrossRef]
  4. S. Palmier, J. L. Rullier, J. Capoulade, J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
    [CrossRef] [PubMed]
  5. S. Papernov, A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92(10), 5720–5728 (2002).
    [CrossRef]
  6. H. Bercegol, F. Bonneau, P. Bouchut, P. Combis, J. Donohue, L. Gallais, L. Lamaignere, C. Le Diraison, M. Loiseau, J. Y. Natoli, C. Pelle, M. Perra, J. L. Rullier, J. Vierne, and H. Ward, “Laser ablation of fused silica induced by gold nano-particles comparison of simulations and experiments at lambda=351 nm,” in High-Power Laser Ablation Iv, Pts 1 and 2 (SPIE, 2002), pp. 1055–1066.
  7. M. J. Matthews, N. Shen, J. Honig, J. D. Bude, A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
    [CrossRef]
  8. F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).
  9. F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).
  10. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [CrossRef]
  11. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [CrossRef] [PubMed]
  12. C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
    [CrossRef]
  13. C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011).
    [CrossRef] [PubMed]
  14. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [CrossRef] [PubMed]
  15. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
    [CrossRef]
  16. R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
    [CrossRef] [PubMed]
  17. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
    [CrossRef] [PubMed]
  18. C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
    [CrossRef]
  19. B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
    [CrossRef] [PubMed]
  20. R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses,” Opt. Express 20(25), 27708–27724 (2012).
    [CrossRef] [PubMed]
  21. K. Takahashi, H. Ishii, Y. Takahashi, K. Nishiguchi, “Valence auger analysis of the annealing effect on atomic interaction at titanium sapphire, titanium silica and silver silica interfaces,” Thin Solid Films 221(1-2), 98–103 (1992).
    [CrossRef]
  22. K. L. Mittal and A. Pizzi, Adhesion Promotion Techniques: Technological Applications (Marcel Dekker, 1999).
  23. H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
    [CrossRef]
  24. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [CrossRef] [PubMed]

2013 (1)

2012 (3)

2011 (3)

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[CrossRef] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

2010 (3)

2008 (1)

2006 (2)

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

2005 (1)

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

2004 (2)

P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

2003 (1)

H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
[CrossRef]

2002 (1)

S. Papernov, A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92(10), 5720–5728 (2002).
[CrossRef]

1998 (1)

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

1996 (1)

F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).

1995 (1)

1992 (1)

K. Takahashi, H. Ishii, Y. Takahashi, K. Nishiguchi, “Valence auger analysis of the annealing effect on atomic interaction at titanium sapphire, titanium silica and silver silica interfaces,” Thin Solid Films 221(1-2), 98–103 (1992).
[CrossRef]

Abdulla, G. M.

Åberg, D.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[CrossRef] [PubMed]

Adams, J. J.

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Bude, J.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[CrossRef] [PubMed]

Bude, J. D.

Burnhan, A. K.

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

Capoulade, J.

Carr, C. W.

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Chow, L.

H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
[CrossRef]

Cordillot, C.

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

Cross, D. A.

DeMange, P.

C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[CrossRef]

Demos, S. G.

R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses,” Opt. Express 20(25), 27708–27724 (2012).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Donohue, E. E.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Donohue, J. T.

P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004).
[CrossRef]

Dufour, G.

P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004).
[CrossRef]

Elhadj, S.

Elshot, K.

H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
[CrossRef]

Erhart, P.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[CrossRef] [PubMed]

Feit, M. D.

R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses,” Opt. Express 20(25), 27708–27724 (2012).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

Fornier, A.

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

Francois-Saint-Cyr, H. G.

H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
[CrossRef]

Furr, J.

F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).

Genin, F. Y.

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).

Hackel, R. P.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

Hollingsworth, W. G.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Honig, J.

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[CrossRef]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Ishii, H.

K. Takahashi, H. Ishii, Y. Takahashi, K. Nishiguchi, “Valence auger analysis of the annealing effect on atomic interaction at titanium sapphire, titanium silica and silver silica interfaces,” Thin Solid Films 221(1-2), 98–103 (1992).
[CrossRef]

Johnson, M. A.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Jonnard, P.

P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004).
[CrossRef]

Kozlowski, M. R.

F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).

Krulevitch, P.

F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).

Laurence, T. A.

Liao, Z. M.

Ly, S.

Matthews, M. J.

McKinley, J. M.

H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
[CrossRef]

Menapace, J.

Michlitsch, K.

F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

Morreeuw, J. P.

P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004).
[CrossRef]

Natoli, J. Y.

Negres, R. A.

Nishiguchi, K.

K. Takahashi, H. Ishii, Y. Takahashi, K. Nishiguchi, “Valence auger analysis of the annealing effect on atomic interaction at titanium sapphire, titanium silica and silver silica interfaces,” Thin Solid Films 221(1-2), 98–103 (1992).
[CrossRef]

Norton, M. A.

C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Nostrand, M. C.

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Palmier, S.

Papernov, S.

S. Papernov, A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92(10), 5720–5728 (2002).
[CrossRef]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Rakic, A. D.

Raman, R. N.

Richardson, K. A.

H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
[CrossRef]

Rubenchik, A. M.

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

Rullier, J. L.

S. Palmier, J. L. Rullier, J. Capoulade, J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
[CrossRef] [PubMed]

P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004).
[CrossRef]

Sadigh, B.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[CrossRef] [PubMed]

Schirmann, D.

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

Schmid, A. W.

S. Papernov, A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92(10), 5720–5728 (2002).
[CrossRef]

Schwegler, E.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[CrossRef] [PubMed]

Shen, N.

Spaeth, M. L.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Stevie, F. A.

H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
[CrossRef]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Takahashi, K.

K. Takahashi, H. Ishii, Y. Takahashi, K. Nishiguchi, “Valence auger analysis of the annealing effect on atomic interaction at titanium sapphire, titanium silica and silver silica interfaces,” Thin Solid Films 221(1-2), 98–103 (1992).
[CrossRef]

Takahashi, Y.

K. Takahashi, H. Ishii, Y. Takahashi, K. Nishiguchi, “Valence auger analysis of the annealing effect on atomic interaction at titanium sapphire, titanium silica and silver silica interfaces,” Thin Solid Films 221(1-2), 98–103 (1992).
[CrossRef]

Trave, A.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[CrossRef] [PubMed]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Yoshiyama, J.

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004).
[CrossRef]

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[CrossRef]

J. Appl. Phys. (2)

S. Papernov, A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92(10), 5720–5728 (2002).
[CrossRef]

H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Proc. SPIE (4)

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[CrossRef]

F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).

F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[CrossRef]

Thin Solid Films (1)

K. Takahashi, H. Ishii, Y. Takahashi, K. Nishiguchi, “Valence auger analysis of the annealing effect on atomic interaction at titanium sapphire, titanium silica and silver silica interfaces,” Thin Solid Films 221(1-2), 98–103 (1992).
[CrossRef]

Other (2)

K. L. Mittal and A. Pizzi, Adhesion Promotion Techniques: Technological Applications (Marcel Dekker, 1999).

H. Bercegol, F. Bonneau, P. Bouchut, P. Combis, J. Donohue, L. Gallais, L. Lamaignere, C. Le Diraison, M. Loiseau, J. Y. Natoli, C. Pelle, M. Perra, J. L. Rullier, J. Vierne, and H. Ward, “Laser ablation of fused silica induced by gold nano-particles comparison of simulations and experiments at lambda=351 nm,” in High-Power Laser Ablation Iv, Pts 1 and 2 (SPIE, 2002), pp. 1055–1066.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sample schematic and damage setup.

Fig. 2
Fig. 2

Optical images of laser cleaning and damage in gold (a), aluminum (b) and silicon (c) films deposited on silica. The corresponding laser fluences used to create these features are listed in each image.

Fig. 3
Fig. 3

Laser damage fluence as a function of annealing temperature for aluminum particles.

Fig. 4
Fig. 4

SEM images and surface profiles of ~350 nm thick aluminum discs after laser irradiation. Panels (a) is as-deposited discs without annealing. Panels (b) to (f) are after 873 K annealing for 2 hours. Laser fluences used to clean or create damage are listed on the images.

Fig. 5
Fig. 5

Damage pit depth as a function of laser fluence for 350 nm thick aluminum discs. The reported damage depth is defined as the average depth of the line profile within the disc footprint. The squares are data for the annealed and the circles are as-deposited discs. The triangles are sites with the annealed discs laser-cleaned at 5 J/cm2 before laser damage testing at higher fluences.

Fig. 6
Fig. 6

AFM images and the surface profiles of (a) an as-deposited aluminum disc after ~1.5 J/cm2 laser irradiated and, (b) an annealed disc after ~4 J/cm2 laser irradiation. The SEM scan of the annealed site in (b) is shown in (c) with the chemical composition analysis done using EDS in the highlighted red square region.

Fig. 7
Fig. 7

Measured and simulated pit depth for aluminum disks irradiated by 355 nm, 3 ns Gaussian pulses. Solid lines are simulations, symbols are experimental data. Pit depth for the measurements is taken with respect to the cleaned pit depth as described above. The solid gray curve shows that there is virtually no heat transport into the bulk without temperature-activated absorption and temperature-activated thermal conductivity.

Tables (1)

Tables Icon

Table 1 Thin film sample matrix.

Metrics