Abstract

A new near-field processing method by femtosecond laser ablation using photoresist enhancing masks is numerically and experimentally investigated. Periodical structures with 2 μm pitch, 1 μm width and 300 nm height, created in polymethyl methacrylate photoresist by e-beam lithography, were used to intensify the incident laser radiation. The near-field distribution and the intensification factor of the optical radiation were computed using the Finite-Difference-Time-Domain numerical simulations. The pattern of the photoresist mask was imprinted on the surface of a silicon wafer. Using a single infrared femtosecond laser pulse, uniform and continuum grooves with the width in the range of 250 nm were obtained on large silicon surface.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Plech, P. Leiderer, J. Boneberg, “Femtosecond laser near field ablation,” Laser Photon. Rev. 5(3), 435–451 (2009).
    [CrossRef]
  2. Z. B. Wang, N. Joseph, L. Li, B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C. 224(5), 1113–1127 (2010).
    [CrossRef]
  3. A. Gorbunov, W. Pompe, “Thin Film Nanoprocessing by Laser/STM Combination,” Phys. Status Solidi, A Appl. Res. 145(2), 333–338 (1994).
    [CrossRef]
  4. K. Piglmayer, R. Denk, D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
    [CrossRef]
  5. B. G. Prevo, O. D. Velev, “Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions,” Langmuir 20(6), 2099–2107 (2004).
    [CrossRef] [PubMed]
  6. R. Kunz, M. Rothschild, M. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21(1), 78 (2003).
    [CrossRef]
  7. M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
    [CrossRef]
  8. W. Cai, R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88(11), 111112 (2006).
    [CrossRef]
  9. W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
    [CrossRef]
  10. E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
    [CrossRef]
  11. R. Riehn, A. Charas, J. Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(4), 526–528 (2003).
    [CrossRef]
  12. E. McLeod, C. B. Arnold, “Array-based optical nanolithography using optically trapped microlenses,” Opt. Express 17(5), 3640–3650 (2009).
    [CrossRef] [PubMed]
  13. S. Maruo, O. Nakamura, S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  14. A. Taflove and S. Hagness Computational Electrodynamics, The Finite-Difference Time-Domain Method, (Artech House, Boston, 2005).
  15. R. K. Harrison, A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: reply,” Opt. Express 19(7), 6179–6181 (2011).
    [CrossRef]
  16. S. Lecler, Y. Takakura, P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
    [CrossRef] [PubMed]
  17. C. V. Shank, R. Yen, C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
    [CrossRef]
  18. D. Eversole, B. Luk’yanchuk, A. Ben-yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
    [CrossRef]
  19. B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).
  20. L. Urech and T. Lippert, Photochemistry and Photophysics of Polymer Materials, (Wiley, 2010), Chap 14.

2011 (1)

2010 (1)

Z. B. Wang, N. Joseph, L. Li, B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C. 224(5), 1113–1127 (2010).
[CrossRef]

2009 (3)

A. Plech, P. Leiderer, J. Boneberg, “Femtosecond laser near field ablation,” Laser Photon. Rev. 5(3), 435–451 (2009).
[CrossRef]

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

E. McLeod, C. B. Arnold, “Array-based optical nanolithography using optically trapped microlenses,” Opt. Express 17(5), 3640–3650 (2009).
[CrossRef] [PubMed]

2007 (2)

W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[CrossRef]

D. Eversole, B. Luk’yanchuk, A. Ben-yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

2006 (1)

W. Cai, R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88(11), 111112 (2006).
[CrossRef]

2005 (1)

2004 (1)

B. G. Prevo, O. D. Velev, “Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions,” Langmuir 20(6), 2099–2107 (2004).
[CrossRef] [PubMed]

2003 (3)

R. Kunz, M. Rothschild, M. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21(1), 78 (2003).
[CrossRef]

B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

R. Riehn, A. Charas, J. Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(4), 526–528 (2003).
[CrossRef]

2002 (1)

K. Piglmayer, R. Denk, D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

1997 (1)

1994 (1)

A. Gorbunov, W. Pompe, “Thin Film Nanoprocessing by Laser/STM Combination,” Phys. Status Solidi, A Appl. Res. 145(2), 333–338 (1994).
[CrossRef]

1992 (1)

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

1983 (1)

C. V. Shank, R. Yen, C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

Arnold, C. B.

Arnold, N.

B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Bäuerle, D.

K. Piglmayer, R. Denk, D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

Ben-Yakar, A.

R. K. Harrison, A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: reply,” Opt. Express 19(7), 6179–6181 (2011).
[CrossRef]

D. Eversole, B. Luk’yanchuk, A. Ben-yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

Betzig, E.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Boneberg, J.

A. Plech, P. Leiderer, J. Boneberg, “Femtosecond laser near field ablation,” Laser Photon. Rev. 5(3), 435–451 (2009).
[CrossRef]

Cacialli, F.

R. Riehn, A. Charas, J. Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(4), 526–528 (2003).
[CrossRef]

Cai, W.

W. Cai, R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88(11), 111112 (2006).
[CrossRef]

Chang, C.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Charas, A.

R. Riehn, A. Charas, J. Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(4), 526–528 (2003).
[CrossRef]

Dabu, R.

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

Denk, R.

K. Piglmayer, R. Denk, D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

Eversole, D.

D. Eversole, B. Luk’yanchuk, A. Ben-yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

Finn, P.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Gorbunov, A.

A. Gorbunov, W. Pompe, “Thin Film Nanoprocessing by Laser/STM Combination,” Phys. Status Solidi, A Appl. Res. 145(2), 333–338 (1994).
[CrossRef]

Guo, W.

W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[CrossRef]

Gyorgy, E.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Harrison, R. K.

Hirlimann, C.

C. V. Shank, R. Yen, C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

Hong, M. H.

B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Huang, S. M.

B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Joseph, N.

Z. B. Wang, N. Joseph, L. Li, B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C. 224(5), 1113–1127 (2010).
[CrossRef]

Kawata, S.

Kryder, M. H.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Kunz, R.

R. Kunz, M. Rothschild, M. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21(1), 78 (2003).
[CrossRef]

Lecler, S.

Leiderer, P.

A. Plech, P. Leiderer, J. Boneberg, “Femtosecond laser near field ablation,” Laser Photon. Rev. 5(3), 435–451 (2009).
[CrossRef]

Li, L.

Z. B. Wang, N. Joseph, L. Li, B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C. 224(5), 1113–1127 (2010).
[CrossRef]

W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[CrossRef]

Liu, Z.

W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[CrossRef]

Luculescu, C.

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

Luk’yanchuk, B.

W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[CrossRef]

D. Eversole, B. Luk’yanchuk, A. Ben-yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

Luk’yanchuk, B. S.

Z. B. Wang, N. Joseph, L. Li, B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C. 224(5), 1113–1127 (2010).
[CrossRef]

Lukyanchuk, B. S.

B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Maruo, S.

McLeod, E.

Meyrueis, P.

Moldovan, A.

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

Morgado, J.

R. Riehn, A. Charas, J. Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(4), 526–528 (2003).
[CrossRef]

Nakamura, O.

Piestun, R.

W. Cai, R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88(11), 111112 (2006).
[CrossRef]

Piglmayer, K.

K. Piglmayer, R. Denk, D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

Plech, A.

A. Plech, P. Leiderer, J. Boneberg, “Femtosecond laser near field ablation,” Laser Photon. Rev. 5(3), 435–451 (2009).
[CrossRef]

Pompe, W.

A. Gorbunov, W. Pompe, “Thin Film Nanoprocessing by Laser/STM Combination,” Phys. Status Solidi, A Appl. Res. 145(2), 333–338 (1994).
[CrossRef]

Prevo, B. G.

B. G. Prevo, O. D. Velev, “Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions,” Langmuir 20(6), 2099–2107 (2004).
[CrossRef] [PubMed]

Riehn, R.

R. Riehn, A. Charas, J. Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(4), 526–528 (2003).
[CrossRef]

Rothschild, M.

R. Kunz, M. Rothschild, M. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21(1), 78 (2003).
[CrossRef]

Rusen, L.

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

Shank, C. V.

C. V. Shank, R. Yen, C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

Stratan, A.

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

Takakura, Y.

Trautman, J.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Ulmeanu, M.

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

Velev, O. D.

B. G. Prevo, O. D. Velev, “Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions,” Langmuir 20(6), 2099–2107 (2004).
[CrossRef] [PubMed]

Wang, Z.

W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[CrossRef]

Wang, Z. B.

Z. B. Wang, N. Joseph, L. Li, B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C. 224(5), 1113–1127 (2010).
[CrossRef]

B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Whitehead, D.

W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[CrossRef]

Wolfe, R.

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

Yen, R.

C. V. Shank, R. Yen, C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

Yeung, M.

R. Kunz, M. Rothschild, M. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21(1), 78 (2003).
[CrossRef]

Zamfirescu, M.

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

K. Piglmayer, R. Denk, D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

W. Cai, R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88(11), 111112 (2006).
[CrossRef]

W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[CrossRef]

E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[CrossRef]

R. Riehn, A. Charas, J. Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(4), 526–528 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

D. Eversole, B. Luk’yanchuk, A. Ben-yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

J. Appl. Phys. (1)

M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009).
[CrossRef]

J. Vac. Sci. Technol. B (1)

R. Kunz, M. Rothschild, M. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21(1), 78 (2003).
[CrossRef]

Langmuir (1)

B. G. Prevo, O. D. Velev, “Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions,” Langmuir 20(6), 2099–2107 (2004).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

A. Plech, P. Leiderer, J. Boneberg, “Femtosecond laser near field ablation,” Laser Photon. Rev. 5(3), 435–451 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

C. V. Shank, R. Yen, C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

Phys. Status Solidi, A Appl. Res. (1)

A. Gorbunov, W. Pompe, “Thin Film Nanoprocessing by Laser/STM Combination,” Phys. Status Solidi, A Appl. Res. 145(2), 333–338 (1994).
[CrossRef]

Proc. Inst. Mech. Eng. Part C. (1)

Z. B. Wang, N. Joseph, L. Li, B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C. 224(5), 1113–1127 (2010).
[CrossRef]

Other (2)

A. Taflove and S. Hagness Computational Electrodynamics, The Finite-Difference Time-Domain Method, (Artech House, Boston, 2005).

L. Urech and T. Lippert, Photochemistry and Photophysics of Polymer Materials, (Wiley, 2010), Chap 14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cross-section view of the Poynting vector magnitude |Sz|. (a) the photoresist mask in free-space. (b) for 1.2 μm gap between mask and the silicon wafer. The photoresist mask was centered at 0 position on the Z axis. The silicon wafer is placed at distance d from the mask. The insets on the right side of the images represent the intensity profiles taken in Z direction.

Fig. 2
Fig. 2

Field intensification factor on silicon surface for different positions of target relative to photoresist mask.

Fig. 3
Fig. 3

The AFM image of the PMMA photoresist mask (a) and of the imprinted pattern at two locations inside the area of quasi-constant intensity: in the center of the exposed zone (b) and at approximately 50 μm far from center, (c). The AFM profiles of the mask (d) and the produced pattern (e) and respectively (f).

Metrics