Abstract

Computer-generated volume holograms (CGVHs) are gradient refractive index (GRIN) devices that consist of a superposition of multiple periodic diffraction gratings. Fabrication of these components for the visible range is difficult due to the small length-scale requirements but is more tenable in the terahertz (THz), as the length scales become more practical (≥ 10−5 m). We successfully utilized polymer-based 3D additive rapid-prototyping technology to fabricate, to our knowledge, the world’s first 3D THz CGVH in approximately 50 minutes, using $12 of consumables. This demonstration suggests that this technique could be extended to fabricate THz volumetric optics with arbitrary electromagnetic profiles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
  2. T. Löffler, T. Bauer, K. Siebert, H. Roskos, A. Fitzgerald, S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9(12), 616–621 (2001).
    [CrossRef] [PubMed]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [CrossRef]
  4. D. Mittleman, “Terahertz Imaging,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer Berlin Heidelberg, 2003), Vol. 85, pp. 117–153.
  5. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [CrossRef]
  6. M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” in AeroSense 2003, (International Society for Optics and Photonics, 2003), 44–52.
  7. W. R. Tribe, D. A. Newnham, P. F. Taday, and M. C. Kemp, “Hidden object detection: security applications of terahertz technology,” in Integrated Optoelectronic Devices 2004, (International Society for Optics and Photonics, 2004), 168–176.
  8. C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people-screening using terahertz technology,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 61–68.
  9. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [CrossRef]
  10. P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, J.-M. Baracco, “Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications,” IEEE Trans. Antenn. Propag. 51(10), 2667–2677 (2003).
    [CrossRef]
  11. B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  12. E. R. Mueller, “Terahertz radiation: applications and sources,” Indust. Phys. 9, 27–30 (2003).
  13. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  14. M. B. Campbell and E. J. Heilweil, “Noninvasive detection of weapons of mass destruction using terahertz radiation,” in AeroSense 2003, (International Society for Optics and Photonics, 2003), 38–43.
  15. G. Kiriakidis, N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).
  16. Z. Wu, J. Kinast, M. E. Gehm, H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008).
    [CrossRef] [PubMed]
  17. Z. Wu, W.-R. Ng, M. E. Gehm, H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
    [CrossRef] [PubMed]
  18. J. W. Goodman, Introduction to Fourier optics (Roberts & Company Publishers, 2005).
  19. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26(20), 4351–4357 (1987).
    [CrossRef] [PubMed]
  20. W.-H. Lee, “III Computer-Generated Holograms: Techniques and Applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1978), Vol. 16, pp. 119–232.
  21. J. Rosen, M. Segev, A. Yariv, “Wavelength-multiplexed computer-generated volume holography,” Opt. Lett. 18(9), 744–746 (1993).
    [CrossRef] [PubMed]
  22. W. Cai, T. J. Reber, R. Piestun, “Computer-generated volume holograms fabricated by femtosecond laser micromachining,” Opt. Lett. 31(12), 1836–1838 (2006).
    [CrossRef] [PubMed]
  23. D. Psaltis, “Coherent Optical Information Systems,” Science 298(5597), 1359–1363 (2002).
    [CrossRef] [PubMed]
  24. A. Kozma, “One-dimensional Holograms for Storing Digital Data,” Topical Meeting on Optical Storage of Digital Data Digest of Technical Papers, Optical Society of America, March 1973.
  25. L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
    [CrossRef]
  26. V. Markov, J. Millerd, J. Trolinger, M. Norrie, J. Downie, D. Timucin, “Multilayer volume holographic optical memory,” Opt. Lett. 24(4), 265–267 (1999).
    [CrossRef] [PubMed]
  27. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
    [CrossRef]
  28. D. Brady, A. G.-S. Chen, G. Rodriguez, “Volume holographic pulse shaping,” Opt. Lett. 17(8), 610–612 (1992).
    [CrossRef] [PubMed]
  29. G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24(12), 811–813 (1999).
    [CrossRef] [PubMed]
  30. W. Liu, G. Barbastathis, D. Psaltis, “Volume Holographic Hyperspectral Imaging,” Appl. Opt. 43(18), 3581–3599 (2004).
    [CrossRef] [PubMed]
  31. C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
    [CrossRef]
  32. Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” J. Appl. Phys. 103(9), 094324 (2008).
    [CrossRef]
  33. P. Hariharan, Optical Holography: Principles, techniques and applications (Cambridge University, 1996), Vol. 20.
  34. G. Cochran, “New method of making Fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56(11), 1513–1517 (1966).
    [CrossRef]

2011

2008

Z. Wu, J. Kinast, M. E. Gehm, H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008).
[CrossRef] [PubMed]

Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” J. Appl. Phys. 103(9), 094324 (2008).
[CrossRef]

2007

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

2006

2005

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

2004

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

W. Liu, G. Barbastathis, D. Psaltis, “Volume Holographic Hyperspectral Imaging,” Appl. Opt. 43(18), 3581–3599 (2004).
[CrossRef] [PubMed]

2003

K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[CrossRef] [PubMed]

P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, J.-M. Baracco, “Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications,” IEEE Trans. Antenn. Propag. 51(10), 2667–2677 (2003).
[CrossRef]

E. R. Mueller, “Terahertz radiation: applications and sources,” Indust. Phys. 9, 27–30 (2003).

2002

D. Psaltis, “Coherent Optical Information Systems,” Science 298(5597), 1359–1363 (2002).
[CrossRef] [PubMed]

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

2001

2000

G. Kiriakidis, N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

1999

1993

1992

1987

1966

Ashley, J.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Balberg, M.

Baracco, J.-M.

P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, J.-M. Baracco, “Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications,” IEEE Trans. Antenn. Propag. 51(10), 2667–2677 (2003).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Barbastathis, G.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

Bauer, T.

Bernal, M.-P.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Brady, D.

Brady, D. J.

Burr, G. W.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Cai, W.

Cameron, C. D.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Chan, W. L.

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

Chen, A. G.-S.

Cochran, G.

Coomber, S. D.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Coufal, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Czasch, S.

de Maagt, P.

P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, J.-M. Baracco, “Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications,” IEEE Trans. Antenn. Propag. 51(10), 2667–2677 (2003).
[CrossRef]

Deibel, J.

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

Downie, J.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Ferguson, B.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Fitzgerald, A.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Gehm, M. E.

Gonzalo, R.

P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, J.-M. Baracco, “Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications,” IEEE Trans. Antenn. Propag. 51(10), 2667–2677 (2003).
[CrossRef]

Guenther, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Hesselink, L.

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Inoue, H.

Jefferson, C. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Katsarakis, N.

G. Kiriakidis, N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).

Kawase, K.

Kinast, J.

Kiriakidis, G.

G. Kiriakidis, N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).

Liu, W.

Löffler, T.

Macfarlane, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Marcus, B.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Markov, V.

Miller, R. J.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Millerd, J.

Mittleman, D. M.

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

Mueller, E. R.

E. R. Mueller, “Terahertz radiation: applications and sources,” Indust. Phys. 9, 27–30 (2003).

Ng, W.-R.

Norrie, M.

Ogawa, Y.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

Payne, D. A.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Peng, Y.

Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” J. Appl. Phys. 103(9), 094324 (2008).
[CrossRef]

Piestun, R.

Psaltis, D.

Reber, T. J.

Rodriguez, G.

Rosen, J.

Roskos, H.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Segev, M.

Seraphin, S.

Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” J. Appl. Phys. 103(9), 094324 (2008).
[CrossRef]

Shelby, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Siebert, K.

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Slinger, C. W.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Smith, A. P.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Smith, M. G.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Stanley, M.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Timucin, D.

Tricoles, G.

Trolinger, J.

Vardaxoglou, Y. C.

P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, J.-M. Baracco, “Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications,” IEEE Trans. Antenn. Propag. 51(10), 2667–2677 (2003).
[CrossRef]

Wang, L.

Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” J. Appl. Phys. 103(9), 094324 (2008).
[CrossRef]

Watanabe, Y.

Watson, P. J.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Wu, Z.

Xin, H.

Yariv, A.

Young, A.

Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” J. Appl. Phys. 103(9), 094324 (2008).
[CrossRef]

Zhang, X.-C.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Appl. Opt.

IBM J. Res. Develop.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

IEEE Trans. Antenn. Propag.

P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, J.-M. Baracco, “Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications,” IEEE Trans. Antenn. Propag. 51(10), 2667–2677 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Indust. Phys.

E. R. Mueller, “Terahertz radiation: applications and sources,” Indust. Phys. 9, 27–30 (2003).

J. Appl. Phys.

Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” J. Appl. Phys. 103(9), 094324 (2008).
[CrossRef]

J. Opt. Soc. Am.

Mater. Phys. Mech.

G. Kiriakidis, N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).

Nat. Mater.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. IEEE

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

Proc. SPIE

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Rep. Prog. Phys.

W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

Science

D. Psaltis, “Coherent Optical Information Systems,” Science 298(5597), 1359–1363 (2002).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Other

A. Kozma, “One-dimensional Holograms for Storing Digital Data,” Topical Meeting on Optical Storage of Digital Data Digest of Technical Papers, Optical Society of America, March 1973.

J. W. Goodman, Introduction to Fourier optics (Roberts & Company Publishers, 2005).

M. B. Campbell and E. J. Heilweil, “Noninvasive detection of weapons of mass destruction using terahertz radiation,” in AeroSense 2003, (International Society for Optics and Photonics, 2003), 38–43.

D. Mittleman, “Terahertz Imaging,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer Berlin Heidelberg, 2003), Vol. 85, pp. 117–153.

M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” in AeroSense 2003, (International Society for Optics and Photonics, 2003), 44–52.

W. R. Tribe, D. A. Newnham, P. F. Taday, and M. C. Kemp, “Hidden object detection: security applications of terahertz technology,” in Integrated Optoelectronic Devices 2004, (International Society for Optics and Photonics, 2004), 168–176.

C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people-screening using terahertz technology,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 61–68.

P. Hariharan, Optical Holography: Principles, techniques and applications (Cambridge University, 1996), Vol. 20.

W.-H. Lee, “III Computer-Generated Holograms: Techniques and Applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1978), Vol. 16, pp. 119–232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Characterization of the EDEN 350 model photopolymer performed on a THz-TDS [32]. The solid blue line (left vertical axis) is the real permittivity of the material; the dashed, green line (right vertical axis) indicates the loss tangent.

Fig. 2
Fig. 2

(a) A simulated cross sectional x-z slice of the multiplexed CGVH with grating periodicities of Λ1 = 2.33 mm and Λ2 = 1.84 mm, depicting the refractive index variation. (b) A fabricated CGVH with its periodic structure clearly visible.

Fig. 3
Fig. 3

(a) The THz-TDS experimental setup showing a single axis rotation stage used to rotate the CGVH and transmitter simultaneously. This maintains normal incidence on the CGVH. The receiver was stationary. The diffraction performance was measured from 0° to 90°. (b) A continuous-wave version of the experiment was used to provide a second verification.

Fig. 4
Fig. 4

(a-c) Measured diffraction efficiencies (DE) of the three CGVHs normalized by the total received power at each frequency of the 2.33 mm (a), 1.84 mm (b), and multiplexed (c) CGVHs respectively. In (b), the overlay outlined in red shows the measured diffraction using a Virginia Diodes CW source and a Golay cell detector, scaled to the TDS data, demonstrating qualitative agreement with the THz-TDS measurement. (d-g) DE plots of the three CGVHs as a function of diffraction angle or frequency. (d) demonstrates the designed Bragg diffraction of the CGVHs with a high DE peak measured at ~60° (solid, red) with 0.145 THz light which was further validated by (e) measured at 60°. In (f), a high DE response at ~43° (dotted, black) was measured with 0.234 THz light. This response was also verified by conversely measuring the DE at 43° showing a high DE at ~0.234 THz (g). These results show that the multiplexed grating (dashed, blue) is a summation of both individual gratings.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n N m n m N + N s n s N

Metrics