Abstract

Currently, different competing waveguide and resonator concepts exist for terahertz quantum-cascade lasers (THz QCLs). We examine the continuous-wave (cw) performance of THz QCLs with single-plasmon (SP) and metal-metal (MM) waveguides fabricated from the same wafer. While SP QCLs are superior in terms of output power, the maximum operating temperature for MM QCLs is typically much higher. For SP QCLs, we observed cw operation up to 73 K as compared to 129 K for narrow (≤ 15 μm) MM QCLs. In the latter case, single-mode operation and a narrow beam profile were achieved by applying third-order distributed-feedback gratings and contact pads which are optically insulated from the intended resonators. We present a quantitative analytic model for the beam profile, which is based on experimentally accessible parameters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
    [CrossRef]
  2. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Topics Quantum Electron. 17, 38–47 (2011).
    [CrossRef]
  3. B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
    [CrossRef]
  4. M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
    [CrossRef]
  5. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
    [CrossRef]
  6. B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
    [CrossRef] [PubMed]
  7. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
    [CrossRef] [PubMed]
  8. L. Mahler, A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser & Photon. Rev. 5, 647–658 (2011).
  9. M. I. Amanti, G. Scalari, F. Castellano, M. Beck, J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
    [CrossRef] [PubMed]
  10. G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
    [CrossRef] [PubMed]
  11. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
    [CrossRef]
  12. S. Kohen, B. S. Williams, Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
    [CrossRef]
  13. G. Scalari, N. Hoyler, M. Giovannini, J. Faist, “Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction,” Appl. Phys. Lett. 86, 181101 (2005).
    [CrossRef]
  14. M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
    [CrossRef]
  15. M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
    [CrossRef]
  16. T.-Y. Kao, Q. Hu, J. L. Reno, “Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers,” Opt. Lett. 37, 2070–2072 (2012).
    [CrossRef] [PubMed]
  17. E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
    [CrossRef] [PubMed]
  18. W. L. Stutzman, G. A. Thiele, Antenna theory and design (Wiley, 2009).
  19. J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
    [CrossRef]
  20. M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
    [CrossRef]
  21. A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
    [CrossRef]
  22. M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
    [CrossRef]
  23. M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, H. T. Grahn, “Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers,” Opt. Express 20, 11207–11217 (2012).
    [CrossRef] [PubMed]
  24. K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011).
    [CrossRef]
  25. J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90, 253512 (2007).
    [CrossRef]

2013 (3)

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

2012 (4)

2011 (3)

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Topics Quantum Electron. 17, 38–47 (2011).
[CrossRef]

L. Mahler, A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser & Photon. Rev. 5, 647–658 (2011).

K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011).
[CrossRef]

2010 (1)

2009 (3)

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

2007 (3)

J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90, 253512 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

2006 (3)

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[CrossRef]

2005 (3)

S. Kohen, B. S. Williams, Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, J. Faist, “Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction,” Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

2003 (1)

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Adam, A. J. L.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

Alton, J.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Amanti, M. I.

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
[CrossRef] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

Anders, W.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[CrossRef]

Andrews, A. M.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Ban, D.

Barbieri, S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Beck, M.

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
[CrossRef] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

Beere, H. E.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Belarouci, A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Benz, A.

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Biermann, K.

M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, H. T. Grahn, “Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers,” Opt. Express 20, 11207–11217 (2012).
[CrossRef] [PubMed]

K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011).
[CrossRef]

Brandstetter, M.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Castellano, F.

Cerda-Méndez, E. A.

K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011).
[CrossRef]

Chan, C. W. I.

Colombelli, R.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Cui, M.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

Davies, A. G.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Detz, H.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

Deutsch, C.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

Dupont, E.

Faist, J.

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
[CrossRef] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90, 253512 (2007).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, J. Faist, “Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction,” Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

Fasching, G.

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Fathololoumi, S.

Fischer, M.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

Gallo, P.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

Gao, J. R.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

Giehler, M.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[CrossRef]

Giovannini, M.

G. Scalari, N. Hoyler, M. Giovannini, J. Faist, “Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction,” Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

Golka, S.

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Grahn, H. T.

M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, H. T. Grahn, “Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers,” Opt. Express 20, 11207–11217 (2012).
[CrossRef] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[CrossRef]

Hayton, D. J.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

Hey, R.

M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, H. T. Grahn, “Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers,” Opt. Express 20, 11207–11217 (2012).
[CrossRef] [PubMed]

K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011).
[CrossRef]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[CrossRef]

Höricke, M.

K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011).
[CrossRef]

Hovenier, J. N.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

Hoyler, N.

G. Scalari, N. Hoyler, M. Giovannini, J. Faist, “Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction,” Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

Hu, Q.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

T.-Y. Kao, Q. Hu, J. L. Reno, “Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers,” Opt. Lett. 37, 2070–2072 (2012).
[CrossRef] [PubMed]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[CrossRef]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

S. Kohen, B. S. Williams, Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Jirauschek, C.

Kao, T. Y.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

Kao, T.-Y.

Kapon, E.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

Kašalynas, I.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

Khanna, S. P.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Klaassen, T. O.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

Klapwijk, T. M.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

Kloosterman, J. L.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

Kohen, S.

S. Kohen, B. S. Williams, Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Krall, M.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

Kumar, S.

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Topics Quantum Electron. 17, 38–47 (2011).
[CrossRef]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Laframboise, S. R.

Letartre, X.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Li, L.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Linfield, E. H.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Liu, H. C.

Lü, X.

MacFarland, D. C.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

Mahler, L.

L. Mahler, A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser & Photon. Rev. 5, 647–658 (2011).

Martl, M.

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Mátyás, A.

Orlova, E. E.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

Ren, Y.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

Reno, J. L.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

T.-Y. Kao, Q. Hu, J. L. Reno, “Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers,” Opt. Lett. 37, 2070–2072 (2012).
[CrossRef] [PubMed]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Ritchie, D. A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Roch, T.

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Rudra, A.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

Santos, P. V.

K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011).
[CrossRef]

Scalari, G.

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
[CrossRef] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, J. Faist, “Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction,” Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

Scamarcio, G.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Schrenk, W.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Schrottke, L.

M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, H. T. Grahn, “Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers,” Opt. Express 20, 11207–11217 (2012).
[CrossRef] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[CrossRef]

Sharma, R.

Sirtori, C.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Spagnolo, V.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Strasser, G.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Stutzman, W. L.

W. L. Stutzman, G. A. Thiele, Antenna theory and design (Wiley, 2009).

Tahraoui, A.

Terazzi, R.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

Thiele, G. A.

W. L. Stutzman, G. A. Thiele, Antenna theory and design (Wiley, 2009).

Tredicucci, A.

L. Mahler, A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser & Photon. Rev. 5, 647–658 (2011).

Unterrainer, K.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Vercruyssen, N.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

Vitiello, M. S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Walker, C. K.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

Wasilewski, Z. R.

Wienold, M.

M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, H. T. Grahn, “Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers,” Opt. Express 20, 11207–11217 (2012).
[CrossRef] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[CrossRef]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[CrossRef]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

S. Kohen, B. S. Williams, Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Worrall, C.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

Xu, G.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Zederbauer, T.

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

Appl. Phys. Lett. (8)

M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, J. Faist, “Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction,” Appl. Phys. Lett. 86, 181101 (2005).
[CrossRef]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006).
[CrossRef]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
[CrossRef]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[CrossRef]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90, 253512 (2007).
[CrossRef]

Electron. Lett. (2)

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Topics Quantum Electron. 17, 38–47 (2011).
[CrossRef]

J. Appl. Phys. (1)

S. Kohen, B. S. Williams, Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

J. Cryst. Growth (1)

K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011).
[CrossRef]

Laser & Photon. Rev. (1)

L. Mahler, A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser & Photon. Rev. 5, 647–658 (2011).

N. J. Phys. (1)

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009).
[CrossRef]

Nat. Commun. (1)

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006).
[CrossRef] [PubMed]

Other (1)

W. L. Stutzman, G. A. Thiele, Antenna theory and design (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Surface emission in k-space for a linear grating emitter (n: refractive index). (b) Idealized linear surface emitter and coordinate system as used in this paper.

Fig. 2
Fig. 2

Calculated far-field intensity as a function of α (β = 90°) and the dimensionless parameter p = nrΛ/λ0 according to Eq. (3) for a linear grating with 16 elements. (a) nr = 2.7 and s = +1, (b) nr = 2.7 and s = −1, (c) nr = 3.3 and s = +1, (d) nr = 3.3 and s = −1. For the black horizontal lines, the boundary conditions according to Eq. (7) are exactly fulfilled. For the definition of α and β, see Fig. 1(b).

Fig. 3
Fig. 3

Calculated threshold gain vs. wavenumber for a FP resonator and two 3ODFB resonators with 15 segments and Λ = 45 μm. (a) FP resonator with an area of 15×670 μm2 and an active region thickness of 11 μm. (b) Square grating notches with 15% duty cycle and 15 μm (5 μm) width in the wide (narrow) section. (c) Tapered grating notches with 25% (7%) duty cycle and 15 μm (6 μm) width in the wide (narrow) region. Modes which are antisymmetric with respect to the longitudinal symmetry are labeled with white dots. A value of g0 = 30 cm−1 was used for the calculations.

Fig. 4
Fig. 4

(a) Top view of 3ODFB resonator designs with contact pads of type A and B. For type B, the light grey region depicts the contact pad area, which is insulated from the active region by a SiOx layer (red) underneath. The actual 3ODFB ridges are 15 μm wide in the broad sections. (b) Scanning electron microscope image of a 3ODFB chip with type-B contact pads.

Fig. 5
Fig. 5

(a) L-J-V performance (cw) of a 0.12×1.28 mm2 SP QCL (FP resonator). The power has been corrected for a collection efficiency of 30%. (b) L-J-V performance (cw) of a 3ODFB QCL of type A with 15/5 μm width in the wide/narrow section and Λ = 45 μm (the total device area is 2.65 × 10−2 mm2). The power has been corrected for a collection efficiency of 17%.

Fig. 6
Fig. 6

(a) Emission spectra for the SP QCL of Fig. 5(a). (b) Emission spectra for the 3ODFB QCL of Fig. 5(b).

Fig. 7
Fig. 7

(a) Emission spectra of 3ODFB QCLs of design type B, for grating periods in the range 46–52 μm. The lasers were operated in cw at 50 K close to their maximum output power. (b) Wavenumber of the different emission lines vs. inverse grating period for all nine lasers on the chip (Λ = 42...58 μm). Red (blue) symbols correspond to the identified ν (ν+) modes and the lines to the respective linear fits.

Fig. 8
Fig. 8

(a) Measured spectrum for a 3ODFB QCL of design type B with Λ = 48 μm emitting in the ν mode. (b) Measured far field corresponding to (a). (c) Calculated far field corresponding to (a) with r = 44 (s = −1, nr = 3.05). (d) Emission spectrum for a 3ODFB QCL with Λ = 54 μm. (e) Measured far field corresponding to (d). (f) Calculated far field corresponding to the ν+ mode in (d) with r = 45 (s = 1, nr = 2.85). For (a), (b), (d), and (e), the lasers were operated at 50 K in pulsed mode (10 μs pulses, 20% duty cycle).

Fig. 9
Fig. 9

Measured cw output power vs. current for three different MM wire QCLs with contact pads of type B (η: collection efficiency). (a) 15 μm wide and 675 μm long FP QCL (resonator area 1.01 × 10−2 mm2), (b) 3ODFB QCL with Λ = 48 μm (resonator area 0.97 × 10−2 mm2), and (c) 3ODFB QCL with Λ = 44 μm (resonator area 0.87 × 10−2 mm2). The inset in (c) depicts the cw emission spectrum taken at 129 K.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

cos ( α ) = n e λ 0 Λ m , ( | m | 1 ) .
n e + 1 2 λ 0 Λ n e 1 .
A ( k 0 ) = j = 1 N { a j exp ( i r j k 0 ) a j exp ( i [ r j k 0 h k y ] ) } .
A ( k 0 ) = i h k y S a S a a ( r ) exp ( i r k 0 ) d S .
a j = a + ( z j ) e i ϕ j + s a ( z j ) e i ϕ j ,
ϕ j = 2 π ( j N + 1 2 ) Λ λ 0 n r .
n r = r λ 0 2 ( N 1 ) Λ .
g th ( j ) = g 0 ω i , g = 0 ( j ) ω i , g = 0 ( j ) ω i , g = g 0 ( j ) ,
d λ B d Λ = 2 M ( n e + d n e d Λ Λ ) ,
d ν B d Λ 1 = M 2 n e 2 ( n e + d n e d Λ Λ ) .

Metrics