Abstract

We present a highly efficient picosecond diamond Raman laser synchronously-pumped by a 4.8 W mode-locked laser at 1064 nm. A ring cavity was adopted for efficient operation. With a low-Q cavity for first-Stokes 1240 nm, we have achieved 2.75 W output power at 1240 nm with 59% overall conversion efficiency. The slope efficiency tended towards 76% far above the SRS threshold, approaching the SRS quantum limit for diamond. A high-Q first-Stokes cavity was employed for second-Stokes 1485 nm generation through the combined processes of four-wave mixing and single-pass stimulated Raman scattering. Up to 1.0 W of second-stokes at 1485 nm was obtained, corresponding to 21% overall conversion efficiency. The minimum output pulse duration was compressed relative to the 15 ps pump, producing pulses as short as 9 ps for 1240 nm and 6 ps for 1485 nm respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [CrossRef]
  2. P. Cerný, H. Jelinkova, P. G. Zverev, T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
    [CrossRef]
  3. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
    [CrossRef]
  4. B. I. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
    [CrossRef]
  5. P. Erný, H. Jelínková, “Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal,” Opt. Lett. 27(5), 360–362 (2002).
    [CrossRef] [PubMed]
  6. M. Weitz, C. Theobald, R. Wallenstein, J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett. 9829), 091122 (2008).
    [CrossRef]
  7. D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, A. Y. Karasik, “Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2–amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
    [CrossRef]
  8. G. G. Grigoryan, S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing a LiIO3 crystal,” Soviet J Quantum Electron. 19(11), 1402–1404 (1989).
    [CrossRef]
  9. E. Granados, H. M. Pask, D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
    [CrossRef] [PubMed]
  10. D. J. Spence, E. Granados, R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
    [CrossRef] [PubMed]
  11. E. Granados, D. J. Spence, R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
    [CrossRef] [PubMed]
  12. E. Granados, H. M. Pask, E. Esposito, G. McConnell, D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18(5), 5289–5294 (2010).
    [CrossRef] [PubMed]
  13. R. P. Mildren, “Intrinsic optical properties of diamond,” in Optical Engineering of Diamond (Wiley, 2013), 1–34.
  14. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [CrossRef] [PubMed]
  15. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
    [CrossRef] [PubMed]
  16. A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
    [CrossRef]
  17. R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond (Wiley, 2013), pp. 239–276.
  18. A. Sabella, J. A. Piper, R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
    [CrossRef] [PubMed]
  19. Q. Fu, G. Mak, H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17(14), 1006–1008 (1992).
    [CrossRef] [PubMed]
  20. E. Granados, D. J. Spence, “Pulse compression in synchronously pumped mode locked Raman lasers,” Opt. Express 18(19), 20422–20427 (2010).
    [CrossRef] [PubMed]
  21. T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).
  22. R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
    [CrossRef]
  23. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15(5), 342–368 (1979).
    [CrossRef]
  24. S. F. Morozov, L. V. Piskunova, M. M. Sushchik, G. I. Freĭdman, “Formation and amplification of quasi-soliton pulses in head-on stimulated scattering,” Sov. J. Quantum Electron. 8(5), 576–580 (1978).
    [CrossRef]
  25. D. S. Chunaev, A. Y. Karasik, “Temporal characteristics of picosecond stimulated Raman scattering in oxide crystals,” Laser Phys. 16(12), 1668–1671 (2006).
    [CrossRef]

2013 (2)

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

2011 (2)

2010 (4)

2009 (1)

2008 (3)

M. Weitz, C. Theobald, R. Wallenstein, J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett. 9829), 091122 (2008).
[CrossRef]

D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, A. Y. Karasik, “Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2–amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[CrossRef]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

2006 (1)

D. S. Chunaev, A. Y. Karasik, “Temporal characteristics of picosecond stimulated Raman scattering in oxide crystals,” Laser Phys. 16(12), 1668–1671 (2006).
[CrossRef]

2004 (1)

P. Cerný, H. Jelinkova, P. G. Zverev, T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

2003 (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

2002 (1)

1999 (1)

1992 (1)

1989 (1)

G. G. Grigoryan, S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing a LiIO3 crystal,” Soviet J Quantum Electron. 19(11), 1402–1404 (1989).
[CrossRef]

1979 (1)

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15(5), 342–368 (1979).
[CrossRef]

1978 (1)

S. F. Morozov, L. V. Piskunova, M. M. Sushchik, G. I. Freĭdman, “Formation and amplification of quasi-soliton pulses in head-on stimulated scattering,” Sov. J. Quantum Electron. 8(5), 576–580 (1978).
[CrossRef]

1970 (2)

B. I. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

Basiev, T. T.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, A. Y. Karasik, “Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2–amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[CrossRef]

P. Cerný, H. Jelinkova, P. G. Zverev, T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef] [PubMed]

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

B. I. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

Bohn, M. J.

Brasseur, J. K.

Carman, B. I.

B. I. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

Cerný, P.

P. Cerný, H. Jelinkova, P. G. Zverev, T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Chunaev, D. S.

D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, A. Y. Karasik, “Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2–amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[CrossRef]

D. S. Chunaev, A. Y. Karasik, “Temporal characteristics of picosecond stimulated Raman scattering in oxide crystals,” Laser Phys. 16(12), 1668–1671 (2006).
[CrossRef]

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Doroshenko, M. E.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15(5), 342–368 (1979).
[CrossRef]

Erný, P.

Esposito, E.

Feve, J.-P. M.

Freidman, G. I.

S. F. Morozov, L. V. Piskunova, M. M. Sushchik, G. I. Freĭdman, “Formation and amplification of quasi-soliton pulses in head-on stimulated scattering,” Sov. J. Quantum Electron. 8(5), 576–580 (1978).
[CrossRef]

Fu, Q.

Goldhar, J.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15(5), 342–368 (1979).
[CrossRef]

Granados, E.

Grigoryan, G. G.

G. G. Grigoryan, S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing a LiIO3 crystal,” Soviet J Quantum Electron. 19(11), 1402–1404 (1989).
[CrossRef]

Ivleva, L. I.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

Jelínek, M.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

Jelinkova, H.

P. Cerný, H. Jelinkova, P. G. Zverev, T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Jelínková, H.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

P. Erný, H. Jelínková, “Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal,” Opt. Lett. 27(5), 360–362 (2002).
[CrossRef] [PubMed]

Karasik, A. Y.

D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, A. Y. Karasik, “Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2–amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[CrossRef]

D. S. Chunaev, A. Y. Karasik, “Temporal characteristics of picosecond stimulated Raman scattering in oxide crystals,” Laser Phys. 16(12), 1668–1671 (2006).
[CrossRef]

Kitzler, O.

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

Konushkin, V. A.

D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, A. Y. Karasik, “Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2–amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[CrossRef]

Kubecek, V.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

L’huillier, J. A.

M. Weitz, C. Theobald, R. Wallenstein, J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett. 9829), 091122 (2008).
[CrossRef]

Liu, H.

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

Mak, G.

McConnell, G.

McKay, A.

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

Mildren, R. P.

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

E. Granados, D. J. Spence, R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[CrossRef] [PubMed]

A. Sabella, J. A. Piper, R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
[CrossRef] [PubMed]

D. J. Spence, E. Granados, R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Morozov, S. F.

S. F. Morozov, L. V. Piskunova, M. M. Sushchik, G. I. Freĭdman, “Formation and amplification of quasi-soliton pulses in head-on stimulated scattering,” Sov. J. Quantum Electron. 8(5), 576–580 (1978).
[CrossRef]

Murray, J. R.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15(5), 342–368 (1979).
[CrossRef]

Osiko, V. V.

Papashvili, A. G.

D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, A. Y. Karasik, “Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2–amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[CrossRef]

Pask, H. M.

E. Granados, H. M. Pask, E. Esposito, G. McConnell, D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18(5), 5289–5294 (2010).
[CrossRef] [PubMed]

E. Granados, H. M. Pask, D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

Piper, J. A.

A. Sabella, J. A. Piper, R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Piskunova, L. V.

S. F. Morozov, L. V. Piskunova, M. M. Sushchik, G. I. Freĭdman, “Formation and amplification of quasi-soliton pulses in head-on stimulated scattering,” Sov. J. Quantum Electron. 8(5), 576–580 (1978).
[CrossRef]

Powell, R. C.

Sabella, A.

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

B. I. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

Shortoff, K. E.

Smetanin, S. N.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

Sobol, A. A.

Sogomonyan, S. B.

G. G. Grigoryan, S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing a LiIO3 crystal,” Soviet J Quantum Electron. 19(11), 1402–1404 (1989).
[CrossRef]

Spence, D. J.

Sushchik, M. M.

S. F. Morozov, L. V. Piskunova, M. M. Sushchik, G. I. Freĭdman, “Formation and amplification of quasi-soliton pulses in head-on stimulated scattering,” Sov. J. Quantum Electron. 8(5), 576–580 (1978).
[CrossRef]

Szoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15(5), 342–368 (1979).
[CrossRef]

Theobald, C.

M. Weitz, C. Theobald, R. Wallenstein, J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett. 9829), 091122 (2008).
[CrossRef]

van Driel, H. M.

Wallenstein, R.

M. Weitz, C. Theobald, R. Wallenstein, J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett. 9829), 091122 (2008).
[CrossRef]

Wang, C. S.

B. I. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

Weitz, M.

M. Weitz, C. Theobald, R. Wallenstein, J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett. 9829), 091122 (2008).
[CrossRef]

Zverev, P. G.

P. Cerný, H. Jelinkova, P. G. Zverev, T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Weitz, C. Theobald, R. Wallenstein, J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett. 9829), 091122 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. 15(5), 342–368 (1979).
[CrossRef]

Laser Phys. (1)

D. S. Chunaev, A. Y. Karasik, “Temporal characteristics of picosecond stimulated Raman scattering in oxide crystals,” Laser Phys. 16(12), 1668–1671 (2006).
[CrossRef]

Laser Phys. Lett. (2)

D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, A. Y. Karasik, “Synchronously pumped intracavity YLF-Nd-KGW picosecond Raman lasers and LiF:F2–amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[CrossRef]

A. McKay, H. Liu, O. Kitzler, R. P. Mildren, “An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output,” Laser Phys. Lett. 10(10), 105801 (2013).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (2)

B. I. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[CrossRef]

Prog. Quantum Electron. (4)

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO4 and SrWO4 crystals under picosecond excitation,” Prog. Quantum Electron. 43(7), 616–620 (2013).

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

P. Cerný, H. Jelinkova, P. G. Zverev, T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Sov. J. Quantum Electron. (1)

S. F. Morozov, L. V. Piskunova, M. M. Sushchik, G. I. Freĭdman, “Formation and amplification of quasi-soliton pulses in head-on stimulated scattering,” Sov. J. Quantum Electron. 8(5), 576–580 (1978).
[CrossRef]

Soviet J Quantum Electron. (1)

G. G. Grigoryan, S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing a LiIO3 crystal,” Soviet J Quantum Electron. 19(11), 1402–1404 (1989).
[CrossRef]

Other (2)

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond (Wiley, 2013), pp. 239–276.

R. P. Mildren, “Intrinsic optical properties of diamond,” in Optical Engineering of Diamond (Wiley, 2013), 1–34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical schematic of the synchronously-pumped diamond Raman laser.

Fig. 2
Fig. 2

Maximum output power (a), pulse duration (b) and SRS threshold (c) of the 1240 nm laser output as a function of cavity length detuning ∆x. The maximum output power and pulse duration data were measured for an incident pump power of 4.8W.

Fig. 3
Fig. 3

Power transfer diagram of 1240 nm laser output and residual pump power at ∆x = 0 μm.

Fig. 4
Fig. 4

(a) Maximum output power, (c) pulse duration, and (d) threshold of the 1485 nm laser output as a function of cavity length detuning ∆x. The leaking forward 1240 nm (a) and residual pump power (b) was also characterized. Backward 1240 nm was obtained in the region ∆x = 0 to + 55 μm. The maximum output power, residual pump power and pulse duration were measured for an incidence pump power of 4.8W.

Fig. 5
Fig. 5

(a) Second-Stokes (1485 nm) output power and first-Stokes (1240 nm) leaking power, (b) residual fundamental (1064 nm) power and anti-Stokes (935 nm) output power as a function of pump power at ∆x = 0 μm. The inset in (a) shows the second-Stokes output power vs. pump power on a log-log plot. The anti-Stokes power below 1.4 W pump power was not measured owing to the limited sensitivity of the power meter used in the experiment.

Tables (1)

Tables Icon

Table 1 Summary of mirror coatings.

Metrics