Abstract

We demonstrate a liquid crystal (LC)-based square lens array with two focusing modes according to the polarization state of the input light. The homogeneously aligned LC layer is placed on an array of static square lenses fabricated using a photo-curable polymer whose refractive index is matched with the refractive index of the LC. For the input beam polarized parallel to the easy axis of the LC, the focal length is varied with the applied voltage from a few meters to 21 mm which corresponds to the focal length of the static lens. For the perpendicularly polarized input beam, the focal length is independent of the applied voltage and remains constant. The two focusing effects with high optical performance over fully activated areas are useful for polarization-dependent imaging systems and three-dimensional displays in projection and integral imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [CrossRef] [PubMed]
  2. H. Ren, S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
    [CrossRef]
  3. H. Ren, J. R. Wu, Y.-H. Fan, Y.-H. Lin, S.-T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30(4), 376–378 (2005).
    [CrossRef] [PubMed]
  4. H.-C. Lin, Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [CrossRef] [PubMed]
  5. Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
    [CrossRef]
  6. H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
    [CrossRef]
  7. Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
    [CrossRef]
  8. C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
    [CrossRef]
  9. H. Ren, Y.-H. Fan, S. Gauza, S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [CrossRef]
  10. W. Choi, D.-W. Kim, S.-D. Lee, “Liquid crystal lens array with high-fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508, 35–40 (2009).
    [CrossRef]
  11. Y. Li, S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [CrossRef] [PubMed]
  12. Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [CrossRef]
  13. C. J. Hsu, C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
    [CrossRef] [PubMed]
  14. L. Lucchetti, J. Tasseva, “Optically recorded tunable microlenses based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 100(18), 181111 (2012).
    [CrossRef]
  15. M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
    [CrossRef]
  16. H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
    [CrossRef] [PubMed]
  17. H. T. Dai, Y. J. Liu, X. W. Sun, D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [CrossRef] [PubMed]
  18. V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10(17), 865–870 (2002).
    [CrossRef] [PubMed]
  19. J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
    [CrossRef] [PubMed]
  20. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [CrossRef] [PubMed]
  21. J.-H. Lee, H.-R. Kim, S.-D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
    [CrossRef]
  22. D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
    [CrossRef]
  23. J. Hong, Y. Kim, S.-G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18(20), 20628–20637 (2010).
    [CrossRef] [PubMed]
  24. Y. Kim, K. Hong, J. Yeom, J. Hong, J.-H. Jung, Y. W. Lee, J.-H. Park, B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20(18), 20130–20138 (2012).
    [CrossRef] [PubMed]
  25. J. Kim, J.-H. Na, S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express 20(3), 3034–3042 (2012).
    [CrossRef] [PubMed]
  26. Data sheet of ZLI-1800–100 provided by Merck, Ltd.
  27. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
    [CrossRef] [PubMed]

2012 (6)

2011 (1)

2010 (3)

2009 (2)

W. Choi, D.-W. Kim, S.-D. Lee, “Liquid crystal lens array with high-fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508, 35–40 (2009).
[CrossRef]

H. T. Dai, Y. J. Liu, X. W. Sun, D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[CrossRef] [PubMed]

2007 (1)

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

2006 (2)

L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

2005 (1)

2004 (3)

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

2003 (2)

H. Ren, S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[CrossRef]

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

2002 (1)

2001 (2)

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
[CrossRef]

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[CrossRef]

1999 (1)

J.-H. Lee, H.-R. Kim, S.-D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

1986 (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[CrossRef] [PubMed]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Asatryan, K.

Asatryan, K. E.

Bagramyan, A.

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Bettiol, A. A.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
[CrossRef]

Bhattacharya, S.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
[CrossRef]

Chen, H.-S.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Cheong, F. C.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
[CrossRef]

Choi, W.

W. Choi, D.-W. Kim, S.-D. Lee, “Liquid crystal lens array with high-fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508, 35–40 (2009).
[CrossRef]

Choi, Y.

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[CrossRef] [PubMed]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Dai, H. T.

del Valle, S.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Dias, D.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
[CrossRef]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Fan, Y.-H.

Galstian, T.

Galstian, T. V.

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Glockner, R.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
[CrossRef]

Hain, M.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
[CrossRef]

Hong, J.

Hong, J.-H.

Hong, K.

Hsu, C. J.

Hsu, H.-K.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Jung, J.-H.

Kim, D.-W.

W. Choi, D.-W. Kim, S.-D. Lee, “Liquid crystal lens array with high-fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508, 35–40 (2009).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Kim, H.-R.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

J.-H. Lee, H.-R. Kim, S.-D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Kim, J.

Kim, J.-H.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Kim, S.-J.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Kim, S.-U.

Kim, Y.

Lee, B.

Lee, J.-H.

J.-H. Lee, H.-R. Kim, S.-D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Lee, K.-H.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Lee, S.-D.

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[CrossRef] [PubMed]

J. Kim, J.-H. Na, S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express 20(3), 3034–3042 (2012).
[CrossRef] [PubMed]

J. Hong, Y. Kim, S.-G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18(20), 20628–20637 (2010).
[CrossRef] [PubMed]

W. Choi, D.-W. Kim, S.-D. Lee, “Liquid crystal lens array with high-fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508, 35–40 (2009).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

J.-H. Lee, H.-R. Kim, S.-D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Lee, Y. W.

Lee, Y. Y. G.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
[CrossRef]

Lee, Y.-M.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Li, W.-Y.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Li, Y.

Lim, C. T.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
[CrossRef]

Lin, H.-C.

H.-C. Lin, Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[CrossRef] [PubMed]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Lin, Y.-H.

Liu, Y. J.

Lu, Y.

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[CrossRef]

Lub, J.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Lucchetti, L.

L. Lucchetti, J. Tasseva, “Optically recorded tunable microlenses based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 100(18), 181111 (2012).
[CrossRef]

Luo, D.

Min, S.-W.

Na, J.-H.

Park, J.-H.

Park, S. C.

Park, S.-G.

Presnyakov, V.

Presnyakov, V. V.

Ren, H.

H. Ren, J. R. Wu, Y.-H. Fan, Y.-H. Lin, S.-T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30(4), 376–378 (2005).
[CrossRef] [PubMed]

H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

H. Ren, Y.-H. Fan, S. Gauza, S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

H. Ren, S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[CrossRef]

Sheu, C. R.

Sow, C. H.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
[CrossRef]

Stallinga, S.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Stankovic, S.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
[CrossRef]

Stapert, H. R.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Sun, X. W.

Tasseva, J.

L. Lucchetti, J. Tasseva, “Optically recorded tunable microlenses based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 100(18), 181111 (2012).
[CrossRef]

Tork, A.

Tschudi, T.

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
[CrossRef]

Tsou, Y.-S.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

van der Zande, B. M. I.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Verstegen, E. J. K.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Watt, F.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
[CrossRef]

Wu, J. R.

Wu, S.-T.

Y. Li, S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[CrossRef] [PubMed]

H. Ren, J. R. Wu, Y.-H. Fan, Y.-H. Lin, S.-T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30(4), 376–378 (2005).
[CrossRef] [PubMed]

H. Ren, Y.-H. Fan, S. Gauza, S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

H. Ren, S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[CrossRef]

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[CrossRef] [PubMed]

Xia, Y.

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[CrossRef]

Yeom, J.

Yin, Y.

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[CrossRef]

Yu, C.-J.

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Zohrabyan, A.

Adv. Funct. Mater. (1)

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Adv. Mater. (1)

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13(1), 34–37 (2001).
[CrossRef]

Appl. Phys. B (1)

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B 78(6), 705–709 (2004).
[CrossRef]

Appl. Phys. Lett. (7)

H. Ren, Y.-H. Fan, S. Gauza, S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

H. Ren, S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[CrossRef]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

L. Lucchetti, J. Tasseva, “Optically recorded tunable microlenses based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 100(18), 181111 (2012).
[CrossRef]

J.-H. Lee, H.-R. Kim, S.-D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006).
[CrossRef]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

W. Choi, D.-W. Kim, S.-D. Lee, “Liquid crystal lens array with high-fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 508, 35–40 (2009).
[CrossRef]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun. 188(5–6), 291–299 (2001).
[CrossRef]

Opt. Express (10)

C. J. Hsu, C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[CrossRef] [PubMed]

H. T. Dai, Y. J. Liu, X. W. Sun, D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[CrossRef] [PubMed]

V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10(17), 865–870 (2002).
[CrossRef] [PubMed]

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[CrossRef] [PubMed]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[CrossRef] [PubMed]

H.-C. Lin, Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[CrossRef] [PubMed]

Y. Li, S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[CrossRef] [PubMed]

J. Hong, Y. Kim, S.-G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18(20), 20628–20637 (2010).
[CrossRef] [PubMed]

Y. Kim, K. Hong, J. Yeom, J. Hong, J.-H. Jung, Y. W. Lee, J.-H. Park, B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20(18), 20130–20138 (2012).
[CrossRef] [PubMed]

J. Kim, J.-H. Na, S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express 20(3), 3034–3042 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986).
[CrossRef] [PubMed]

Other (1)

Data sheet of ZLI-1800–100 provided by Merck, Ltd.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The schematic diagram of our LC-based square lens array (R denotes the rubbing direction of the top substrate). Operation principles when the polarization direction of the input light (b) coincides with the rubbing direction and (c) is perpendicular to the rubbing direction. Here, w, d, h1, h2 denote the length of the side of a square lens, the cell gap, the height of the lens part, and the height of the polymer background, respectively. The inset in (a) shows the SEM image of a portion the polymer lens array.

Fig. 2
Fig. 2

(a) Experimental geometry for observing far-field output images through the lens array. Photographic images of our LC based square lens array with backlight polarized (b) parallel to the rubbing direction and (c) perpendicular to the rubbing direction. Here, P and R denote the optic axis of the polarizer and the rubbing direction on the top substrate, respectively.

Fig. 3
Fig. 3

(a) Experimental geometry for capturing a CCD image of a collimated laser beam in the focal plane of the lens array (2 X 2). (b) The images in the focal plane under the applied voltages of 0, 4, 8, and 16 V when the polarization direction of the input light was parallel to the rubbing direction. (c) The normalized intensity profiles under several different applied voltages when the polarization direction of the input light was parallel to the rubbing direction.

Fig. 4
Fig. 4

(a) The CCD images of a collimated laser beam in the focal plane under the applied voltages of 0, 4, 8, and 16 V when the polarization direction of the input light was perpendicular to the rubbing direction. (b) The normalized intensity profiles under several different applied voltages when the polarization direction of the input light was perpendicular to the rubbing direction.

Fig. 5
Fig. 5

The focal length of the square lens array as a function of the applied voltage.

Fig. 6
Fig. 6

(a) Experimental geometry for selecting certain focused images according to the polarization state and the applied voltages. The polarization direction for the letters of “M” and “P” and that for the letters of “I” and “D” were mutually orthogonal to each other. The output images when the rubbing direction was perpendicular to the polarization direction for the letters of “M” and “P” under the applied voltages of (b) 0 V and (c) 10 V. The output images when the angle θ between the rubbing direction and the polarization direction is 45þ under the applied voltages of (d) 0 V and (e) 10 V. The output images when the rubbing direction was parallel to the polarization direction for the letters of “M” and “P” under the applied voltages of (f) 0 V and (g) 10 V. The scale bar is 200 μm. Here, P and R denote the optic axis of the polarizers and the rubbing direction in the LC lens, respectively.

Metrics